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Abstract
Magnesium (Mg2+) is an essential mineral nutrient, necessary for many biochemical reactions 
in the human body, including energy metabolism, protein and DNA synthesis, maintenance of 
the electrical potential of nervous and cardiac tissues, control of blood glucose, and regulation 
of blood pressure. However, currently, the world population suffers from a severe problem 
because the consumption of Mg2+ in the diet is deficient and generalized in the populations. 
Mg2+ deficiency causes oxidative stress (OS) due to the increase in reactive oxygen species 
(ROS) that originate from mitochondrial dysfunction, activation of the renin-angiotensin-
aldosterone system (RAAS), and abnormal regulation of calcium homeostasis. In addition, 
Mg2+ deficiency also causes inflammation by increasing the production of proinflammatory 
molecules such as interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha (TNF-α), which in 
turn can exacerbate the production of ROS. The combination of inflammation and OS induced 
by Mg2+ deficiency increases the risk of developing chronic diseases. This review describes 
Mg2+ deficiency, its complications, and its relationship with OS and chronic inflammatory 
diseases. In addition, the importance of increasing the intake of Mg2+ throughout the world 
is highlighted.
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Introduction

Crucial micronutrients such as magnesium (Mg2+) are essential for correct body function. 
Its deficiency is associated with the development of comorbidities such as diabetes, obesity, 
and cardiovascular diseases (CVD, i.e., heart failure, arrhythmias, atherosclerosis, stroke, 
and hypertension) [1–6]. These comorbidities are frequently associated with an increase 
in inflammatory markers and oxidative stress (OS), in which Mg2+ deficiency may play an 
important role [2, 7,8]. Subclinical Mg2+ deficiency is widespread worldwide, mainly due 
to insufficient dietary intake [6, 9–16]. Unfortunately, this deficiency is difficult to detect 
but stimulates the production of cytokines in cells, causing chronic inflammation and, 
consequently, OS [17, 18].

This narrative review focuses on Mg2+ deficiency, its complications, and its relationship 
with OS and chronic inflammatory diseases. We highlight the potential importance of 
increasing Mg2+ intake worldwide to attenuate manifestations and symptoms derivate from 
Mg2+ deficiency. Our exhaustive review of the scientific literature was conducted in the “PubMed 
databases”. Search keyword terms included all possible combinations, abbreviations, and 
synonyms between “magnesium”, “magnesium deficiency”, “magnesium supplementation”, 
“cardiovascular diseases”, “Diabetes”, “oxidative stress”, and “inflammation.” We also 
considered the publication date from 1957 to 2022.

Mg2+ body functions

Mg2+ is the fourth most abundant intracellular ion in the human body [18, 19]. Mg2+ 
is essential to cellular processes, including energetic metabolism, protein and amino acid 
synthesis, and maintenance of the electrical potential of nerve tissues and cell membranes 
[18, 20]. Many enzymes that are vital for life require Mg2+. It is estimated that Mg2+ acts as a 
cofactor for over 600 enzymes and an activator in other 200 enzymes [21]. Fundamentally, 
Mg2+ participates as a cofactor in several complex electron transport chain subunits, including 
methylenetetrahydrofolate dehydrogenase 2 and pyruvate dehydrogenase phosphatase [22]. 
In this respect, Mg2+ is needed to feed the electron transport chain with nicotinamide adenine 
dinucleotide reduced (NADH) and flavine-adenine dinucleotide reduced (FADH2) due to 
acetyl coenzyme A (acetyl-CoA) requires Mg2+ to enter the tricarboxylic acid cycle [23, 24]. 
Also, Mg2+ is fundamental to signal transduction processes requiring kinases because almost 
all transphosphorylation reactions require Mg2+ [25]. Mg2+ is needed for all the reactions in 
which ATP participates; binding sites of the substrate in kinases, ATPases, guanylyl cyclases, 
and adenylyl cyclases are specific to the Mg-ATP complex [21]. In this sense, 538 kinases 
have been identified that comprise the human kinome, and an example of them are glycolytic 
enzymes, i.e., hexokinase, phosphofructokinase, aldolase, phosphoglycerate kinase, and 
pyruvate kinase [21, 26]. Mg2+ is also necessary for the structure and activity of DNA and 
RNA polymerases. Mg2+ is required for the enzyme to make conformational changes during 
catalytic reactions [27]. Mg2+ also participates in muscle relaxation, neurotransmission, and 
stabilizing of the cellular membrane (reducing its fluidity and permeability indirectly by 
disturbances in lipid metabolism) [28–31]. Mg2+ is a key component in mediating protein 
synthesis through stabilizing the structure of ribosomes, stabilizing the secondary structure 
of ribosomal RNA (rRNA), and ribosomal binding proteins to rRNA [32]. Mg2+ binds to rRNA 
and ribosomal proteins alleviating electrostatic phosphates repulsion; they translate the 
genetic information encoded by mRNA [32, 33]. When Mg2+ concentration is low (e.g., 10 
mM in 70S ribosomes from Escherichia coli), the ribosome dissociates with the release of 
ribosomal components, stopping polypeptide synthesis [33, 34].

Moreover, Mg2+ is also necessary to transport vitamin D and activate it [35, 36]. Vitamin 
D binding protein (VDBP) and vitamin D receptor (VDR) are Mg2+ dependent for binding 
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vitamin D [37]. Also, the enzymes responsible for vitamin D metabolism require Mg2+ as a 
cofactor for 25 hydroxylations of vitamin D in the liver and 1a hydroxylation in the kidneys 
[37]. Besides, Mg2+ may act as a second messenger in different cell signal pathways [38, 39]. 
For example, the Mg2+ cation has been described as a second signaling messenger in T cells 
[4, 21, 39]. Thus, Mg2+ has a closer relationship with adaptative immunity, mainly related to 
signaling and immunomodulatory pathways [20, 40, 41]. To summarize, Mg2+ has multiple 
functions, primarily associated with energy metabolism; its deficiency causes mitochondrial 
dysfunction and damage, increasing reactive oxygen species (ROS) production, which, 
in addition to the inflammatory response observed in Mg2+ deficiency, leads to chronic 
metabolic diseases [3, 17, 42, 43].

Mg2+ homeostasis

Mg2+ homeostasis is maintained by the intestine, bone, and kidneys [40]. In the small 
intestine, Mg2+ reabsorption is mediated by the passive paracellular pathway dependent 
on an electrochemical gradient. However, a small portion is absorbed by the large intestine 
mediated by transient receptor potential melastatin 6 and 7 channel (TRPM6 and TRPM7), 
which also involve calcium absorption [21, 40]. Proteins that transport Mg2+ are required to 
recognize the large, hydrated cation, remove its hydration layer, and deliver the dehydrated 
ion to the Mg2+ transporters for transcellular transport across the membrane [44]. It has 
been reported that in normal consumption of 370 mg, the intestine only absorbs between 
30-50% of Mg2+, and the not absorbed Mg2+ is eliminated in the feces [21].

Bone is the most important Mg2+ reservoir, containing around 65%, residing in the bone 
at hydroxyapatite crystals surface; 34% is intracellular, less than 1% is extracellular, and 
only 0.3% is found in serum. Bone surface Mg2+ or exchangeable Mg2+ pool is continuously 
exchanged with blood Mg2+. During Mg2+ depletion, the Mg2+ concentration in bone 
exchangeable Mg2+ pool decreases to maintain blood Mg2+, reducing bone formation [45]. 
Additionally, during Mg2+ deficiency, increased proinflammatory cytokines such as substance 
P, tumor necrosis factor-alpha (TNF-α), and interleukin (IL)1 promote osteoclastic bone 
resorption [46].

The kidney maintains the serum concentration of Mg2+. Approximately 70% of the total 
serum Mg2+ is not protein bound, making it available for glomerular filtration. However, Mg2+ 
can be reabsorbed in the ascending limb of the loop of Henle (65-75%) and the proximal 
convoluted tubule (5-15%) using paracellular pathways. Also, the distal convoluted tubule 
reabsorbs 5-10% of Mg2+ through TRPM6/7 channels [47]. Under normal conditions, 96% of 
the filtered Mg2+ is reabsorbed, and the body’s Mg2+ balance is delicately adjusted by urinary 
excretion [47].

To summarize, the intestine, bones, and kidneys maintain the serum Mg2+ concentration; 
kidneys play a central role because gastrointestinal absorption is balanced by renal excretion 
(Fig. 1).

Mg2+ intake
The primary source of Mg2+ is the diet [48]. Mg2+ intake recommendations are provided 

in the Dietary Reference Intakes (DRI), which are developed by the Food and Nutrition Board 
(FNB) at the National Academies Institute of Medicine (formerly the National Academy of 
Sciences) [49]. DRI is the set of reference values used to plan and assess the nutrient intake 
of healthy people. These values vary by age and gender and include a) the recommended 
dietary allowance (RDA), which refers to the average daily level of intake sufficient to 
meet the nutrient requirements of nearly all healthy people (97–98%); b) adequate intake 
(AI), which is the intake that guarantees nutritional adequacy; c) the estimated average 
requirement (EAR) which is equivalent to the average daily level of consumption estimated 
to meet the requirements of 50% of healthy individuals; and finally d) the tolerable upper 



Cell Physiol Biochem 2023;57(S1):1-23
DOI: 10.33594/000000603
Published online: 1 February, 2023 4

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2023 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

Arancibia-Hernández et al.: Magnesium deficiency and oxidative stress-associated 
diseases

intake level (UL), which refers to supplemented Mg2+, that is, that which is not consumed in 
food because it is more for pharmacological use [49, 50]. Table 1 lists the different reference 
values for Mg2+ [49].

 Whole grains are considered the best dietary source of Mg2+. In fact, Mg2+ has been 
linked to most of the benefits of whole grain intake, including reduced risk of diabetes, 
coronary heart disease, stroke, and various types of cancer [51]. Also, leafy-green foods (e.g., 
chard, spinach, purslane), nuts, peas, and green lentils are good sources of Mg2+. Other foods 
with high levels of Mg2+ are dark chocolate, black beans, avocados, and some other fruits, also 
seeds such as pumpkin and chia seeds [52–55].

Mineral water is another important source of Mg2+ in the diet [56, 57]. Due to the 
relatively frequent consumption of water for drinking and food preparation, mineral water 
as a source of Mg2+ may be an essential part of the daily Mg2+ intake. However, the quality 
of the water is essential since the available Mg2+ content depends on it. Using hard water 
(calcium and Mg2+ concentration of 100-200 mg/L) to boil food rich in Mg2+ may prevent 
its loss, while boiling this food in soft water (calcium and Mg2+ concentration less than 100 
mg/L) may leach out it [58]. In this respect, many studies have found a relationship between 
drinking water mineral content and CVD risk [59–68]. Catling et al. [69] conclude with an 
extensive review of epidemiological studies that there was significant evidence of an inverse 
association between Mg2+ content in drinking water and cardiovascular mortality. Sabatier et 
al. [70] showed in a study with ten healthy white women (aged 25-45) that Mg2+ from Mg2+ rich 
mineral water (110 mg/L) is highly bioavailable, with a ≈50% Mg2+ absorption from mineral 

Fig. 1. Magnesium homeostasis (Mg2+). The Mg2+ consumed through the diet is absorbed throughout the 
entire gastrointestinal tract and into the blood, while that not absorbed is excreted in the feces. Once in the 
blood, the Mg2+ passes quickly to the different tissues. The kidney is essential to Mg2+ homeostasis since 
the most significant amount is filtered here, and only about 5% is excreted in the urine. Under conditions 
of Mg2+ deficiency, the concentration of exchangeable Mg2+ in bone decreases to maintain Mg2+ in the blood, 
reducing bone formation. In addition, they increase proinflammatory cytokines that promote osteoclastic 
bone resorption. IL: interleukins, TNFα: tumor necrosis factor-α, TRPM: transient receptor potential 
melastatin. Created with biorender.com (published with permission from biorender.com).
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water consumed, being even better 
when water was consumed with a 
light meal (may due the transit time of 
Mg2+ in the intestine). Thus, mineral 
Mg2+-rich water is a calorie-free good 
source of Mg2+. Mg2+ bioavailability is 
comparable for mineral waters with 
different mineralization levels or 
other food such as bread and dietary 
supplements [56].

However, most of the population 
does not consume these rich Mg2+ 
foods and water daily; therefore, it 
is insufficient to cover the dietary 
reference intake (DRI), leading to 
Mg2+ deficiency. Blache et al. [8] have 
shown in a preclinic study that a long-
term moderate Mg2+ deficiency diet is 
closely related to increased mortality, 
blood pressure, inflammation, 
and lipid oxidation. Also, they 
demonstrated that these effects were 
mainly due to chronic impairment 
of redox status associated with 
inflammation, and these effects can 
be normalized or improved with 
Mg2+ supplementation. In addition, it 
has been seen that a high intake of processed foods provides low amounts of Mg2+. Food 
processing, which can range from cooking to refining, causes a substantial loss of Mg2+ [71, 
72]. Since a large part of the population has opted for refined cereals consumption, the intake 
of trace elements such as Mg2+, which are found in the pericarp of cereal grains, has decreased 
notably [72]. For this reason, subclinical Mg2+ deficiency has been observed more frequently, 
mainly in populations that consume processed foods, such as the U.S. and countries with a 
Western diet [6, 10–15, 73, 74].

Mg2+ deficiency

Mg2+ deficiency means body deficiency, including hypomagnesemia (specifically serum 
deficiency). Low levels of Mg2+ characterize Mg2+ deficiency and depends on its chronicity 
and status. For instance, Nielsen et al. [75] demonstrated a significant deprivation of red 
blood cell membrane Mg2+ in healthy postmenopausal women. They were on a restrictive 
diet of approximately 33% of the DRI of Mg2+ for 78 days. Thus, these authors concluded that 
Mg2+ deficiency is mainly associated with chronic inadequate Mg2+ intake [75].

Due to its facility and cost, total serum Mg2+ is the most used measure to diagnose Mg2+ 
deficiency clinically. The normal serum Mg2+ concentration is between 0.850 and 0.955 
mmol/L [76]; if the serum Mg2+ concentration is below 0.7 mM, it is hypomagnesemia. 
According to Liu and Dudley Jr [3]., mild to moderate hypomagnesemia is when serum Mg2+ 
is between 0.5–0.69 mM, and severe hypomagnesemia is when serum Mg2+ is lower than 0.5 
mM. Hypermagnesemia is characterized by high levels than normal serum concentrations of 
Mg2+ [3].

Unfortunately, even with a total serum Mg2+ level in the acceptable range, there may 
exist deficiency since approximately 55% of serum Mg2+ is in its bioactive form. At the same 
time, the rest is bound to proteins such as albumin or an anionic complex [77, 78]. Although 
Mg2+ serum concentrations are the main form to describe abnormalities in the Mg2+ status, 

Table 1. Dietary Reference Intakes (DRI) for Magnesium 
Intake (Mg2+). RDA: recommended dietary intake, EAR: 
estimated average requirement, UL: tolerable upper intake 
level, NE: not established. * Adequate Intake (AI)

 

 

Life Stage RDA EAR UL 

Birth to 6 months 30 mg* NE NE 

    

Infants 7–12 months 75 mg* NE NE 

    

Children 1–3 years 80 mg 65 mg 65 mg of Mg2+ supplemented 

    

Children 1–3 years 130 mg 110 mg 110 mg of Mg2+ supplemented 

    

Children 4–8 years 240 mg s 200 mg 

350 mg of Mg2+ supplemented  

Children 9–13 years 410 mg 340 mg 

Teen boys 14–18 years 360 mg 300 mg 

Teen girls 14–18 years 400–420 mg 300-350 mg 

Men 310–320 mg 225-265 mg 

Women 400 mg 335 mg 

Pregnant teens 350–360 mg 290-300 mg  

Pregnant women 360 mg 300 mg 

Breastfeeding teens 310–320 mg 255-265 mg 
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these are very unspecific, providing inaccurate body Mg2+ status data. For instance, body Mg2+ 
homeostasis in other tissues, including bone, the main reservoir, provides Mg2+ through bone 
resorption during Mg2+ deficiency or insufficient Mg2+ intake, but this is related to a lower 
bone mineral density [79–81]. Mg2+ deficiency has detrimental effects on skeletal health, 
contributing to osteoporosis [81]. Thus, normal serum Mg2+ concentrations could mask Mg2+ 
deficiency in other tissues like bone.

Also, some conditions affect circulating Mg2+ concentrations; an example of this is an 
abnormal state in the acid-base balance in the blood as slight acidosis. Defects can cause 
acidosis in renal tubules that facilities the reabsorption of bicarbonate or secretion of protons 
[82], also during a failure of respiratory ventilation due to carbon dioxide accumulation 
[83]. Acidosis generally occurs due to increased acid production, decreased acid excretion, 
acid ingestion, and bicarbonate losses [84]. That serum acid increase can release Mg2+ 
from the bone surface, artificially increasing the Mg2+ detected in serum that can mask 
hypomagnesemia [9]. In addition, the acidosis significantly increasing urine Mg2+ excretion 
[28, 85]. Thus, acidosis masks hypomagnesemia and induces Mg2+ excretion, harming Mg2+ 
homeostasis.

The positive correlation between hypomagnesemia, higher morbidity, and mortality 
in hospitalized patients in an intensive care unit (ICU) [86, 87] makes it fundamental to 
know the general Mg2+ status. Thus preventing increased risk parameters associated with 
mortality (i.e., high C-reactive protein (CRP) serum levels and electrolytic abnormalities) 
[86, 87].  Various methods of assessing Mg2+ status, from surveys to clinical concentration 
data, have been extensively reviewed [88–91]. Not all the methods are of clinical utility to 
diagnose hypomagnesemia, but these indicate clinical or subclinical Mg2+ deficiency. These 
are considered measures for the evaluation of the status of the nutrient [88, 91, 92]. To 
obtain a valid assessment of Mg2+ status, Costello and Nielsen [88] proposed the combined 
determination of the concentration of serum Mg2+, the 24-hour urine Mg2+ excretion, and 
the intake diet. Due to difficulties in hypomagnesemia detection, it has proposed a sensible 
measurement of the bioactive form concentrations of whole blood from acute oral Mg2+ 
intake compared to serum and urine total Mg2+  [88].

Mg2+ deficiency can represent a potential risk to health [1, 4,93, 94]. An association 
between Mg2+ deficiency and sudden death has even been suggested [95]. In a preclinical 
study by Fiset et al. [96], rats assigned to an Mg2+-free diet with consequent hypomagnesemia 
commonly died from episodes of sudden death after inadvertent startles. Because seizures 
preceded sudden death, the authors concluded that sudden cardiac death was probably 
due to a neurological trigger’s interaction and ventricular repolarization dispersion [96]. 
Depending on the degree of Mg2+ deficiency and its chronicity, it can present from a mild clinical 
presentation, such as weakness 
or fatigue, and escalate to 
severe and life-threatening 
complications such as 
arrhythmias, heart failure, or 
electrolyte disorders (Table 2) 
[3, 9,17, 18, 21, 36, 40, 93, 94, 
97].

Mg2+ deficiency can 
decrease the synthesis of 
proteins, carbohydrates, lipids, 
and genetic material [40]. It 
could also affect the functioning 
of the other micronutrients, 
such as reducing the number 
of VDRs available in vitamin D 
target cells [98, 99]. When Mg2+ 
deficiency is acute, muscle 
cramps help to its diagnosis 
[18]. However, in a chronic 

Table 2. Mg2+ deficiency clinical presentation

 

 

 

Clinical presentation 

Gastrointestinal disorders 
 Diarrhea 

 Queasiness 
 Vomit 

 Abdominal pain  

Cardiovascular diseases 

 Atrial and ventricular arrhythmias 
 Torsade de pointes 

 Prolonged QT interval 
 Heart failure 
 Hypertension 

Humor changes 

 Depression 
 Anxiety 
 Stress 

 Irritability 
 Lethargy 
 Psychosis 
 Migraine 
 Confusion  

 Decreased attention span   

Electrolyte disorders 
 Hypokalemia 
 Hypocalcemia 

 Decreased levels of parathyroid hormone (PTH)  
 Resistance to vitamin D 

Muscular and Neuromuscular conditions 

 Cramps 
 Paresthesia 

 Neuromuscular hyperexcitability  
 Tetany  
 Seizures 

 Muscular weakness 
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clinical deficiency, the symptoms are less severe, infrequent, and nonspecific, making its 
diagnosis difficult [18].

The causes of Mg2+ deficiency are many and very frequent
Abnormal Mg2+ levels during Mg2+ deficiency can be attributed to various factors. Intrinsic 

factors are insufficient intake or gastrointestinal insufficiency, decreased absorption due 
to injury to the intestinal epithelium (e.g., damage from alcoholism), kidney damage, and 
replacement therapies [17, 20, 100, 101]. At the same time, extrinsic factors may be diuretics 
that alter the renal tubule’s reabsorption due to alterations in the electrochemical gradient. 
Loop diuretics decrease Mg2+ reabsorption, and thiazide diuretics reduce Mg2+ reabsorption 
and enhance its excretion [102, 103]. Also, some others are related to lower levels of Mg2+ 
in soil due to Mg2+ leaching, consequently affecting food levels [104]. An example is the 
decreased mineral concentration reported in wheat for the past several decades [105–107]. 
Fan et al. [106] showed a significant decrease of 27% in the concentration of Mg2+ in wheat 
from 1968. The authors conclude that significant changes were made that year in cultivars 
due to the “Green Revolution,” with higher grain yields but a dilution effect on mineral 
concentration.

As in wheat, other comparative studies of ancient and modern times observed a historical 
depletion in the concentration of minerals in food [108–110]. Unfortunately, this decrease in 
the concentration of Mg2+ is observed in fruits, vegetables, and cereals, affecting other food 
groups such as their derivatives and animal origin [108]. The latter means that people need 
to eat more servings of food to obtain the same Mg2+ content as in the past, which is especially 
problematic due to metabolic syndrome problems in the current population [107].

In industrialized countries, clinical and subclinical Mg2+ deficiency is increasing, which 
can be associated with pathological states [1, 4,73, 74, 76, 93]. Multiple factors contribute to 
Mg2+ deficiency. For example, in people with diets high in phosphate (PO4

3-), Mg2+ absorption 
may be decreased due to the ability of PO4

3- to bind to Mg2+, reducing its availability [9, 28, 
93, 111]. In general, the main source of phosphorus comes from soda (phosphoric acid) and 
inorganic PO4

3- contained in many ingredients used in processed foods (i.e., meat products). 
Dairy (especially cheese) also contributes to increasing Mg2+ requirements due to their 
phosphorus-magnesium-calcium ratio [93, 111]. Diets high in dietary fiber decrease the 
absorbed fraction of Mg2+. Fiber phytate decreases Mg2+ absorption because Mg2+ binds to 
the PO4

3- groups of phytic acid [28, 112]. In addition to the abovementioned cases, other 
factors contribute to Mg2+ deficiency, such as chronic diseases, gastrointestinal disorders, 
elderly age, and emotional stress [6, 9,17, 20, 93, 97, 100, 111]. The following list shows 
factors that contribute to Mg2+ deficiency:

•	 Diets with refined and processed foods 
•	 Chronic diseases (kidney disease, cancer, insulin resistance, diabetes) 
•	 Gastrointestinal disorders (intestinal lesions, Chhorn’s disease, irritable bowel 

syndrome, celiac syndrome, celiac disease, gastroenteritis ulcerative colitis) 
•	 Drugs (diuretics, insulin, proton pump inhibitors) 
•	 Chronic stress 
•	 Strenuous physical exercise 
•	 Deficiency or excess of vitamin D (lack causes less absorption of Mg2+, the 

excess causes excessive absorption of Ca2+)  
•	 Excessive supplementation or high levels content of other micronutrients in the 

diet such as Ca2+ and phosphorus   
•	 Elderly age 
•	 Alcoholism 
•	 Intake of coffee and tea (caffeine) 
•	 High saturated fat in the diet 
•	 Excessive menstruation 
•	 Emotional stress (overactivation of the sympathetic nervous system)  
•	 Laxative abuse 
•	 High intake of dietary fiber and phytic acid  
•	 Metabolic acidosis
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Subclinical Mg2+ deficiency is the most common in the population, especially in countries 
that consume refined or ultra-processed products [9, 73, 74, 93]. The 2013-2016 National 
Health and Nutrition Examination Survey (NHANES) conducted on the US population showed 
that approximately 48% of the general population over one year does not reach the adequate 
intake of Mg2+. Moreover, in people older than 19 years (adult population), just over 50% of 
the population does not have consumption habits that cover the DRI [113].

According to an analysis of the 2006 national health and nutrition survey conducted 
on the Mexican population, 35% of adult men and women older than 20 have low serum 
concentrations of Mg2+ [10].  In addition, 64.2% of women and 25.2% of men presented a 
low ingestion of Mg2+ compared with the DRI [10]. Based on the same survey, Cruz-Góngora 
et al. [114] reported that in the 12 to 19-year-old population, the overall prevalence of low 
serum Mg2+ was 37.68%, and at least 50% of the analyzed population did not comply with 
the DRI [114]. In the case of the child population, Morales-Ruán et al. [11] reported that 
the nutritional status of Mg2+ in Mexican children from 1 to 11 years old is deficient, and 
the prevalence of low serum Mg2+ concentrations is 22.6% for this population. The lowest 
prevalence (9.1%) of low serum Mg2+ concentrations is in the population 1 to 2 years old 
[11].  The latter evidence shows the trend toward increasing Mg2+ deficiency prevalence with 
age.

At a global level, the consumption of Mg2+ in the diet is deficient and generalized in the 
populations (Table 3) [6, 9–16, 115]. Subclinical Mg2+ deficiency has been observed more 
frequently, mainly in populations consuming processed food, such as the US and countries 
with a Western diet [1, 4,9, 73, 74, 76, 93].

In addition to the countries mentioned above, DiNicolantonio et al. [93] included Japan 
and Ukraine as countries consuming insufficient amounts of Mg2+. The latter derives from 
the results obtained in the National Nutrition Survey in Japan in 2002, where it was found 
that for people aged 15 to 49 years, the intake of Mg2+ was below the Japanese recommended 
daily dose. Moreover, in Kiev (Ukraine), men between the ages of 20 and 59 years (n= 780) 
consumed 10% less than the recommended Mg2+ intake.

Table 3. Mg2+ deficiency is global and general. Mg2+: magnesium; mg/d: milligrams per day; mmol/d: 
millimole per day; DRI: Dietary Reference Intakes; RDA: Recommended Dietary Allowances; EAR: Estimated 
Average Requirement

 

 

 

 

Continent Country n Population Mg2+ Intake Clinical Mg2+ levels Ref. Men Women 

Asia 

Taiwan 

1,911 
(intake) 

 
2,225 

(plasma 
Mg2+) 

Adults >65 years 250 ± 13 mg/d 
69.4% of the DRI 

216 ± 11mg/d 
68.6% of the DRI 

Prevalence of a 
plasma Mg2+ level <0.7 
mM was 0.7-0.9% and 

<0.8 
mM was 8.0-9.1%. 

[6] 

India 283 
Women >18 years 

pregnant (>28 
weeks) 

- 
3.9% of the 
population 

consumes less than 
50% of RDA 

43.6% of the 
population had 

deficient serum Mg2+ 
concentration 

[115] 

Europe 

Belgium 2,000 
Healthy Belgium 

adult population in 
four sampling sites 

271 ± 44 mg/d 
 

Below the RDA 
- [12] 

Spain 

3,421 
(intake) 

 
354 

(serum 
Mg2+) 

Andalusia's 
population is aged 25 

to 60 years 

11.70 ± 3.02 mmol/d 11.76 ± 3.02 
mmol/d 8.82% presented 

deficient serum Mg2+ 
concentration 

[13] 
32.31% had an intake of <2/3 RDA 

France 
 

5,448 Adults 35 to 60 years 
373 ± 169 mg/d 

 
72% with intake 

below RDA 

276 ± 126 mg/d 
 

77% with intake 
below RDA 

- [14] 

2,373 
French 

representative 
population aged 4 to 

92 years 

(4-9 years) prevalence of inadequate intake 
5.7% 

- [15] 
(10-90 years) 
prevalence of 

inadequate intake 
(below the EAR) 

71.7 % 

(15-92 years) 
prevalence of 

insufficient intake 
(below the EAR) 

82.5 % 

America Brazil 115 University students 
aged 19 to 29 years 

217.6 ± 72.5 mg/d 
(below the EAR) 

211.7 ± 77.7 mg/d 
(below the EAR) 

42% had low Mg2+ in 
plasma or 

erythrocytes 
[16] 
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Mg2+ deficiency is difficult to detect at an early stage since bone compensation of Mg2+ 
maintains normal serum Mg2+ levels; and the absence of signs or symptoms [45, 116]. 
Knowing the general body Mg2+ status is essential to avoid other related Mg2+ deficiency 
complications, such as chronic inflammation and excessive production of ROS. To properly 
diagnose and treat Mg2+ deficiency, it is necessary to carry out more than one measurement 
of the Mg2+ levels method. It is suggested that due to the compensation of the homeostasis 
of Mg2+, the detection of low levels of Mg2+with a single method cannot be a good indicator 
of deficiency

In summary, many factors could contribute to developing a chronic deficiency. It is clear 
that Mg2+ intake is inadequate worldwide, and Mg2+ deficiency is a potential public health 
problem; nevertheless, the consequences of this deficiency are more frequently reflected in 
older adults.

Relationship between Mg2+ deficiency with OS and inflammation

Mg2+ deficiency has been widely correlated to the development of OS [3, 117]. OS is 
defined as “an imbalance between the generation of oxidants (ROS and reactive nitrogen 
species) and their removal systems (antioxidants) in favor of oxidants, leading to disruption 
of redox signaling and control and/or molecular damage” [118]. Mitochondria are the 
primary source of ROS production, and mainly, when mitochondria suffer structural or 
functional damage, excessive ROS production is generated [119]. Studies have shown that 
Mg2+ deficiency causes mitochondrial dysfunction [43, 120]. Mitochondria are the main 
reservoirs of Mg2+ in most cells (with mitochondrial Mg2+ concentrations between 0.2 and 1.5 
mM) [121]. However, intracellular Mg2+ deficiency inhibits Mg2+ transport to the mitochondria 
through mitochondrial RNA splicing protein 2 (MRS2) and promotes mitochondrial Mg2+ 
efflux via solute carrier family 41, member 3 (SLC41A3), leading to decreased mitochondrial 
Mg2+ [3]. Mitochondrial Mg2+ deficiency decreases the activity of the electron transport chain, 
which alters coupled respiration [122–124] and increases the production of mitochondrial 
ROS [125, 126]. In addition, the antioxidant defense system (such as superoxide dismutase 
(SOD), catalase, and glutathione) is suppressed, and ATP synthase (F0F1) is downregulated, 
causing a decrease in ATP concentration [127–129]. In turn, the decrease in ATP causes an 
increase in the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 
(NOX) [130].

Mg2+ deficiency also causes depolarization of the mitochondrial membrane potential 
(ΔΨm) [131] by promoting the opening of the mitochondrial ATP-sensitive potassium (K) 
channel [132], the anion channel of the inner membrane (IMAC) [133] and the mitochondrial 
permeability transition pore (PTP) [134]. These effects exacerbate ROS production and 
lead to apoptosis, where Bcl-2-associated X (Bax) and the voltage-gated anion channel 
(VDAC) increase cytochrome C release, leading to apoptosome formation [135]. In addition, 
antiapoptotic proteins such as the Bcl-2 family are decreased, and proapoptotic proteins 
such as HIF-1α and p38/JNK are increased [136].

On the other hand, Mg2+ deficiency also increases the concentration of calcium (Ca) in 
the mitochondria through the mitochondrial Ca uniporter (MCU) [131, 137], which could 
alter ΔΨm. In contrast, Ca leakage from mitochondria via VDAC increases with apoptosis 
induced by Mg2+ deficiency. Other mechanisms that explain the increase in intracellular 
calcium in situations of Mg2+ deficiency include the activation of N-methyl-D-aspartate 
(NMDA) receptors in neural cells and L-type calcium channels in adipose tissue [2, 138].

The excess of intracellular Ca results in the activation of Ca-dependent processes, such 
as the release of inflammatory cytokines and the activation of NOX by phosphorylation 
of protein kinase C (PKC), the activation of nitric oxide synthase (NOS) and the calcium-
dependent calmodulin complex, which exacerbates ROS production [1]. Likewise, the increase 
in Ca stimulates the release of catecholamines, and it has been proven that catecholamines 
increase the production of ROS [139]. Furthermore, elevated levels of catecholamines, such 
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as epinephrine, cause Mg2+ 
deficiency to intensify, creating 
a vicious circle [140].

Likewise, Zheltova et 
al. [117] suggest that Mg2+ 
deficiency and Ca increase 
cause an increase in the number 
of available substrates for 
radical oxidation. A greater 
amount of Ca stimulates the 
activity of phospholipase A2 
[141], an enzyme responsible 
for mobilizing unsaturated fatty 
acids (UFA) from phospholipids. 
UFAs, either free or bound to 
triglycerides and phospholipids, 
can be readily oxidized by ROS 
to form lipid hydroperoxides. 
In turn, hydroperoxides can 
decompose to form new radicals, 
thus initiating branching chain 
reactions that lead to self-
sustaining peroxidation [142, 
143].

OS can also be generated 
because the renin-angiotensin-
aldosterone system (RAAS) is 
activated by Mg2+ deficiency 
[138, 144]. It is well established 
that angiotensin II activates 
NOX, monocytes, macrophages, 
and endothelial cells to produce 
ROS [145, 146]. In addition, 
RAAS has been shown to 
decrease the expression of 
TRPM6 and TRPM7, Mg2+ 
transporters, which further 
increases intracellular Mg2+ 
deficiency [147]. Fig. 2 shows 
the possible mechanisms by 
which Mg2+ deficiency increases 
ROS production.

On the other hand, 
inflammation is also a highly 
reported consequence in situations where the concentration of Mg2+ is insufficient [7, 148]. 
In addition, the OS generated by low concentrations of Mg2+ could have a strong relationship 
with inflammation [3, 149]. As mentioned above, Mg2+ deficiency causes excessive ROS 
production mainly due to mitochondrial dysfunction, abnormal calcium homeostasis, and 
RAAS activation. The increase in ROS activates transcription factors such as NF-κB [150]. For 
example, Mg2+ deficiency has been shown to induce lipid peroxidation and NF-κB activation 
in cultured canine cerebral vascular tissue [151]. NF-κB is inactive in the cytoplasm, and 
its activation generates the transcription of proinflammatory cytokines such as TNF-α and 
interleukins (IL-1 and 6) [150, 152]. Bussière et al. [153] showed that an early consequence 
of Mg2+ deficiency is the activation of polymorphonuclear leukocyte activity and elevated 

Fig. 2. Magnesium deficiency (Mg2+) and oxidative stress (OS). 
Mg2+ deficiency in mitochondria leads to the inhibition of the 
electron transport chain (ETC) and the opening of different 
channels, decreasing the mitochondrial membrane potential 
(ΔψM), Bax recruitment and calcium efflux (Ca2+). These factors 
increase the production of reactive oxygen species (ROS) in 
mitochondria and induce apoptosis. Intracellular Mg2+ deficiency 
activates N-methyl-D-aspartate (NMDA) receptors, contributing 
to the increase in Ca2+. High concentrations of Ca2+ they increase 
ROS through calmodulins, catecholamines, nitric oxide synthase 
(NOS), and nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase (NOX). NOX is also activated by decreased 
production of adenosine triphosphate (ATP) and the renin-
angiotensin-aldosterone system (RAAS). NMDA also activates 
phospholipase A, increasing the concentration of free fatty 
acids (FFA) and ROS. Low concentrations of Mg2+ are enhanced 
by inhibition of mitochondrial RNA splicing protein 2 (MRS2), 
activation of solute transporter family 41 member 3 (SLC41A3), 
RAAS, and catecholamines. Bax: Bcl-2 associated X, CAT: catalase, 
Cyc c: cytochrome c, IMAC: inner membrane anion channel, K: 
potassium, MCU: mitochondrial Ca2+ uniporter, PKC: protein 
kinase C phosphorylation, PTP: pore permeability transition, SOD: 
superoxide dismutase, TRPM9: melastatin transient receptor 
potential, VDAC: voltage-gated anion channel. Created with 
biorender.com (published with permission from biorender.com).
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circulating levels of IL-6. Likewise, Malpuech-Brugère et al. [154] observed macrophage 
activation and an elevation of IL-6 in rats after a few days of Mg2+ deficiency. Therefore, 
Mg2+ deficiency induces an acute phase inflammatory response that turns into chronic 
inflammation [7, 153].

In the brain, NF-κB can also be activated by substance P (SP), vascular cell adhesion 
molecule-1, and inhibitor of plasminogen activator-1, which is induced by NMDA activation 
and the increased intracellular calcium by decreasing the concentration of Mg2+ [155]. 
Indeed, in a mouse model of Mg2+ deficiency, immunochemistry revealed that substance P 
is increased by 230 and 200% in megakaryocytes and lymphocytes, respectively, after 1 
day of Mg2+ depletion [46]. Furthermore, SP has a direct role in promoting the activation of 
neutrophils and endothelium and inducing nitric oxide (NO) production; these processes 
could participate in the OS that contributes to the depletion of blood glutathione [156].

Mg2+ deficiency also increases endothelin levels, an endothelial cell-derived cytokine 
[157]. Likewise, it has been reported that animals with Mg2+ deficiency present greater 
recruitment and activity of phagocytic cells [1, 158]. The origin of this phenomenon is not 
well understood, but it is probably also related to OS [1]. Finally, inflammation related to Mg2+ 

deficiency is also generated by reducing anti-inflammatory mediators such as NO, lipoxins, 
resolvins, and protectins [159, 160].

In summary, Mg2+ deficiency is strongly related to OS due to impaired calcium 
homeostasis, mitochondrial dysfunction, and RAAS activation. OS can cause inflammation, 
and inflammation, in turn, improves 
OS (Fig. 3). However, some aspects 
of this relationship are not yet 
fully elucidated. Therefore, more 
preclinical and clinical studies are 
needed to clarify the mechanisms 
involved in the relationship 
between Mg2+ deficiency with OS 
and inflammation.

Mg2+ deficiency, chronic 
inflammatory, and OS-
associated diseases

Mg2+ deficient diets lead to 
low Mg2+ body concentrations, 
decreased antioxidants, and 
OS that progresses to oxidative 
damage, such as lipid peroxidation 
[2, 4,75, 161–163]. Also, there 
is evidence that low Mg2+ body 
concentrations are associated with 
increased OS and cytokine storm 
due to the alteration of antioxidant 
and immune defenses [111, 162, 
164, 165]. Thus, Mg2+ deficiency is 
strongly associated with increased 
OS and metabolic syndrome mainly 
associated with low-grade systemic 
inflammation, such as obesity, 
diabetes, and CVD [2–4, 166]. 
These CVD includes heart failure, 
arrhythmias, atrial fibrillation, 
atherosclerosis, hypertension, and 
preeclampsia [3–5].

Fig. 3. Relationship between magnesium (Mg2+) deficiency 
with oxidative stress (OS) and inflammation. Mg2+ deficiency 
causes an increase in reactive oxygen species (ROS) due to 
mitochondrial damage, an increase in N-methyl-D-aspartate 
(NMDA), and the activation of the renin-angiotensin-
aldosterone system (RAAS). The latter also increases the 
recruitment of phagocytic cells, which exacerbates ROS. 
ROS activates the transcription factor nuclear transcription 
factor kappa B (NF-κB), which increases the transcription 
of proinflammatory cytokines such as tumor necrosis 
factor-alpha (TNF-α) and interleukins (1 and 6). This leads 
to inflammation. NF-κB is also activated by substance P 
(SP). Finally, Mg2+ deficiency causes a decrease in anti-
inflammatory factors, exacerbating inflammation. Ca: calcium, 
mt: mitochondria, NOX: adenine dinucleotide phosphate 
(NADPH) oxidase. Created with biorender.com (published 
with permission from biorender.com).
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Mg2+ deficiency and cardiovascular diseases
Low serum Mg2+ levels have been associated with increased cardiovascular mortality 

by causing cardiovascular problems and exacerbating pre-existing ones [3, 5,8, 43, 75, 93, 
120, 167–169]. In contrast, restoration of adequate Mg2+ levels or supplementation has been 
associated with improvements in CVD [3, 5,43, 75, 120, 169–171]. In a preclinical study with 
mice, Liu et al. [43] observed that a low Mg2+ diet for six weeks significantly decreased serum 
Mg2+ concentration. In addition, as a consequence, cardiac functions were affected with 
prolonged QTc intervals; mitochondrial dysfunction was observed in mouse cardiomyocytes 
with low cellular ATP production, overproduction of mitochondrial ROS, and mitochondrial 
membrane depolarization. Finally, normalizing these affectations with the replacement of 
Mg2+ [43]. In another study by Watanabe et al. [120], similar results were observed since an 
Mg2+ deficient diet for eight weeks significantly decreased plasma Mg2+ levels. In addition 
to increased systolic and diastolic blood pressure, left ventricular hypertrophy, macrocytic 
anemia, and impaired basal cardiac contractile activities. Similarly, observing that with the 
replacement of Mg2+, the conditions described above were normalized [120].

One of the causes of these CVDs is that intracellular Mg2+ deficiency leads to inflammation 
and cardiovascular fibrosis. The latter was identified thanks to the anti-inflammatory and 
anti-fibrotic role of coenzyme TRPM7 mediated partly through Mg2+ dependent mechanisms 
since mice deficient in TRPM7 presented significant cardiac hypertrophy, fibrosis, and 
inflammation; Mg2+ treatment at a cellular level ameliorated effects [172]. Also, the 
electrophysiologic changes resulting from Mg2+ deficiency can increase the risk of malignant 
ventricular arrhythmias and sudden cardiac death [173, 174].

A higher incidence of sudden death in some geographic regions attracts attention, 
and researchers begin to relate them to geological environments such as drinking water 
due to their mineral content [62]. Residents in soft water areas presented higher sudden 
death rates due to an increased susceptibility to lethal arrhythmias [62, 63, 95]. Electrolyte 
disturbances are a frequent complication of chronic heart failure [175]. Patients with 
isolated hypomagnesemia (without other electrolyte disturbance) frequently present 
electrocardiogram disturbances with a P wave, corrected QT, and corrected T peak-to-end-
interval duration prolonged, suggesting atrial depolarization and ventricular repolarization 
dispersion increased [176]. Even though the electrophysiologic action on cellular function 
is unclear, it suggests that these disturbances may have importance in the relationship 
between hypomagnesemia and sudden death [176]. Mg2+ deficiency has been implicated in 
sudden death, and it is suspected that the electrophysiological changes induced by calcium 
are involved [177, 178].

Mg2+ deficiency and diabetes
Mg2+ deficiency is widely associated with diabetes, mainly in type 2 diabetes [179–

186]. Hypomagnesemia is frequently identified in diabetic patients and contributes to the 
progression of diabetes complications [187, 188]. Also, numerous studies have described 
a high prevalence of Mg2+ deficiency in diabetic patients [6, 180, 185, 189–192]. There has 
been evidence that Mg2+ deficiency alters calcium homeostasis by competitively inhibiting 
the voltage-dependent calcium channel, leading to lower insulin secretion [42, 193]. Mg2+ 
deficiency also may influence the insulin signaling pathway, modifying sensitivity to insulin, 
such as increasing the association between insulin receptor substrate-1 and p58 subunit of 
phosphatidyl-inositol 3 kinase or reducing the phosphorylation of protein kinase B (Akt), 
leading to a diminished response to insulin [194, 195]. As if that were not enough, it has 
been observed that Mg2+ excretion is more significant in diabetic patients than in healthy 
subjects due to type 2 diabetes frequently causing damage to the glomerular filtration 
barrier, altering Mg2+ reabsorption [196–198]. The latter indicates that Mg2+ deficiency is 
promoted by diabetes, and at the same time, Mg2+ lack exacerbates IR and impaired insulin 
secretion diabetes.
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Also, as mentioned previously, inflammation and OS are related to the incidence of 
diabetes, a consequence of cellular signaling pathways interference [179, 199, 200]. The 
secretion of IL-1, IL-6, IL-8, IL-18, TNF-α, beta-adrenergic, and ROS in IR is enhanced in 
Mg2+ deficiency [42]. King et al. [201] observed that diabetic patients with elevated glycated 
hemoglobin levels present elevated CRP concentrations, indicating systemic inflammation. 
Han et al. [202] even suggest that inflammation is essential in diabetic pathogenesis and a 
high CRP level increases the risk of developing diabetes. Although the linking mechanisms 
of inflammation and IR are unclear, inflammation plays an important role via cytokines and 
molecular pathways [203].

Mg2+ supplementation to prevent diseases progression

Fortunately, Mg2+ replenishment in inflammatory pathologies associated with 
Mg2+ deficiency through supplementation is favorable. Clinic and pre-clinic studies 
showed decreased inflammatory biomarkers and disease improvement (Table 4) [8, 
170, 171, 204–211]. These optimistic and encouraging results suggest using Mg2+ as an 
immunomodulatory agent, 
a regulator of inflammation 
and associated conditions, 
thus preventing the 
development of severe 
or chronic inflammation 
[3, 163, 205]. Mg2+ 
therapy decreases nuclear 
transcription factor kappa 
B (NF-κB), IL-6, TNF-α, and 
CRP and enhances vitamin 
D functionality [36, 99, 111, 
212].

Also, Mg2+ 
supplementation has been 
observed to be effective as 
a treatment in diabetic rats 
due to increased insulin 
receptors and glucose 
transporter-4 improving 
glucose tolerance and 
lowering blood glucose 
levels almost to the 
normal range [215]. Even 
it has observed reduced 
oxidative damage and 
increased glutathione 
concentrations [215]. Liu 
et al. [216] also observed 
that Mg2+ supplementation 
positively affects insulin 
sensitivity by increasing 
insulin receptor expression. 
Additionally, Kamran et al. 
[217] observed that Mg2+ 
supplementation improved 
blood glucose levels and 

Table 4. Diseases associated with Mg2+ deficiency and the effect of 
supplementation. BDSW: Balanced Deep Water, hs-CRP: High Sensitivity 
Serum C-Reactive Protein, IL-1: Interleukin 1, Mg2+: Magnesium, OGTT: 
Oral Glucose Tolerance Test, PCO: Protein Carbonyl, TAC: plasma total 
antioxidant capacity, TNF-α: tumor necrosis factor-alpha, ICU: intensive 
care unit

 

 

 

Associated disease Population or study 
model Supplementation Conclusions Ref. 

Hypertension (effective 
supplementation 
associated with a 
deficiency) 

Uncomplicated 
hypertensive patients 

with normal renal 
function 

 
Age: 20 to 65 years 

Oral magnesium aspartate 
hydrochloride (20 mmol 

elemental Mg2+/day) for 3 
months 

There were no significant changes in 
systolic, diastolic, or mean blood 

pressure. 
It was concluded that supplementation 

with Mg2+ is only effective when there is 
a deficiency of Mg2+. 

[208] 

Ventricular 
arrhythmias 

Patients with stable 
congestive heart failure 
secondary to coronary 

artery disease 
 

Age: 42 to 73 years 

Magnesium chloride (15.8 
mmol of Mg2+/day) for six 

weeks: 

Oral intake of Mg2+ decreased the 
frequency of asymptomatic ventricular 

arrhythmias in patients with chronic 
congestive heart failure and lower 

mean arterial pressure. 

[170] 

 
Hypertension 

Patients with mild to 
moderate primary 

hypertension without 
complications 

 
Age: 36 to 65 years 

Magnesium oxide (600 mg 
Mg2+/day, divided into 3 doses) 

for six weeks 

Oral intake of Mg2+ reduced diastolic, 
systolic, and mean blood pressure, with 
an increase in intracellular Mg2+ and a 

decrease in intracellular Na+. 

[209] 

Cardiovascular 
diseases 

Patients with systolic 
heart failure  

Magnesium citrate (300 
mg/day) for 5 weeks 

Increased intracellular magnesium and 
the correlation of heart rate variability  [213] 

Preeclampsia Women with severe 
nulliparous preeclampsia 

Therapy with a loading dose of 
4 g magnesium sulfate (MgSO4) 

intravenously over 30 min 
followed by a maintenance 

dose of 1 g/h. 

MgSO4 showed a significant reduction 
in the level of lipid peroxidation and 
osmotic fragility of red blood cells. 

[210] 

Diabetes 
Diabetic patients 

 
Age: ≥65 years 

Magnesium pidolate (368mg 
Mg2+/day) for one month 

Magnesium pidolate resulted in 
significant improvement of brachial 

artery endothelial function 
[171] 

Polycystic ovary 
syndrome (PCOS) 

Women with diagnosed 
PCOS 

according to the 
Rotterdam criteria 

 
Age: 18 to 40 years, 

treatment 

Magnesium oxide (250 mg/ 
twice daily) + zinc sulfate (220 
mg/ twice daily) for 12 weeks 

Co-supplementation of magnesium and 
zinc may confer an advantageous 

therapeutic potential in PCOS patients 
by decreasing hs-CRP, PCO, IL-1, TNF-α, 

and increasing TAC. 

[206] 

COVID-19 

Patients diagnosed with 
COVID-19 

 
Age: ≥ 50 years 

 
Vitamin D3 (1000 IU/day) + 
magnesium oxide (150 mg 

Mg2+/day) + vitamin B12 (500 
µg/day) for ≤14 days 

The combination of treatments was 
associated with a significantly lower 

probability of requiring oxygen therapy 
or going to the ICU. 

[205] 

Prediabetes 

Adults with the following 
history: 

 
Age: 19 to 70 years old 

OGTT: 75g 
Fasting glucose levels: 

100-125 mg/dL. 
Glycemia at 2 

postprandial hours: 140–
199 mg/dL. 

 
BDSW water with magnesium 

and calcium (3:1) and a 
hardness of 4000 (440 ml/day) 

for eight weeks. 
 

Amount of Mg2+: 
350mg 

BDSW improves insulin sensitivity 
parameters and lipid profiles [211] 

Metabolic syndrome Adults with metabolic 
syndrome and 

30 mL of 5% magnesium 
chloride solution, equivalent to 

Blood pressure, hyperglycemia and 
hypertriglyceridemia were reduced [214] 
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intraperitoneal glucose tolerance test of diabetic rats and improved Akt-2 and insulin 
receptor substrate-1 gene and protein expression, increasing glucose transportation in 
skeletal muscle. In summary, Mg2+ supplementation promotes the correct insulin signaling 
pathway increasing the expression of proteins involved in enhancing its activity.

Concluding remarks and future directions

Although it is still uncertain whether Mg2+ deficiency is the origin or consequence of 
diseases associated with OS and inflammation, there is clear evidence that it represents a 
greater risk for their development, in addition to the high prevalence of Mg2+ deficiency in 
these patients and that this leads to exacerbating clinical symptoms. So, maintaining optimal 
Mg2+ body concentration may be favorable in preventing of OS, inflammation, and, thus, 
chronic comorbidities. Furthermore, Mg2+ deficiency is directly associated with physiological 
mechanisms such as electrophysiology, insulin excretion, and sensitivity. Therefore, it is 
associated with an increased risk of developing or exacerbating diabetes and CVD. Although 
favorable results have been observed with Mg2+ supplementation in inflammatory markers, 
more specific studies are required to evaluate and understand the Mg2+ supplementation 
effect as a joint therapy in comorbidities and to prevent disease development. Also, 
assessing the impact of Mg2+ supplementation in healthy subjects as a preventive treatment 
is necessary.
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