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Abstract

Background/Aims: Acute lung injury (ALl) and acute respiratory distress syndrome (ARDS)
are a continuum of life-threatening lung changes. Pulmonary vascular injury is one of the most
important initial causes of ALl and ARDS. However, the functions of long noncoding RNAs
(IncRNAs) in pulmonary endothelial injury remain largely unknown. The aim of the present
study was to determine the IncRNA expression profile of human pulmonary microvascular
endothelial cells (HPMECs) exposed to lipopolysaccharide (LPS) and explore the potential
functions of differentially expressed IncRNAs. Methods: Microarray analysis was used to
identify differentially expressed IncRNAs and mRNAs. Bioinformatics analyses, including Gene
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, IncRNA-mRNA
coexpression network and transcription factor (TF)-IncRNA network analyses, were performed
to predict the functions of significantly differentially expressed IncRNAs and mRNAs. Real-
time polymerase chain reaction (PCR) was used to determine the expression of selected
IncRNAs and mRNAs. Results: In this study, we found that 213 IncRNAs and 212 mRNAs were
significantly differentially expressed in HPMECs exposed to LPS (fold change > 2.0, p < 0.05).
Furthermore, we found that mRNAs co-expressed with IncRNAs were significantly enriched
in the TNF signaling pathway, the NF-kB signaling pathway, cell adhesion molecules (CAMs),
cytokine-cytokine receptor interactions, and extracellular matrix (ECM)-receptor interactions.
The expression levels of all but one of the selected IncRNAs and mRNAs detected by real-time
PCR were similar to those detected by microarray analysis. Conclusion: Our data indicate
that IncRNAs play an important role in LPS-induced pulmonary endothelial inflammation and
barrier dysfunction and may be potential preventive and therapeutic targets for ALI and ARDS.
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Introduction

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are part of a
continuum of life-threatening lung changes that interfere with the diffusion of oxygen from
alveoli into the blood [1-4]. Sepsis and pneumonia are the most common causes of ARDS,
and pulmonary vascular injury is one of the most important initial causes of ALI and ARDS.
ARDS accounts for 10% of intensive care unit admissions globally. Despite years of basic and
clinical studies, the global mortality of ARDS has been as high as 40% in recent years [5, 6].
For these reasons, the identification of key molecules involved in ARDS is highly demanded
for improving the clinical outcome of this syndrome.

It is now generally accepted that the majority of mammalian RNA transcripts are
noncoding RNAs (ncRNAs). Long noncoding RNAs (IncRNAs), which are longer than 200
nucleotides, are generally not translated into proteins [7-10]. By regulating gene expression
at posttranscriptional, transcriptional and epigenetic stages, IncRNAs participate in most
essential biological processes. Over the past decade, the study of IncRNAs has become a hot
spot in basic and clinical research of ALI and ARDS. Recent studies have shown that miRNAs
are involved in the pathophysiology of ARDS and may be interesting diagnostic biomarkers
and therapeutic targets [11-20]. However, less is known about the role of IncRNAs in the
pathogenesis of ALI and ARDS.

To study the function of IncRNAs in the pathogenesis of ALI and ARDS, we established
an experimental model of pulmonary endothelial inflammation and barrier dysfunction by
stimulating HPMECs with LPS [21-24] and investigated the expression profile of IncRNAs and
mRNAs by microarray analysis. We found that 213 IncRNAs and 212 mRNAs were significantly
differentially expressed. Bioinformatics analyses indicated that the differentially expressed
IncRNAs might play an important role in LPS-induced pulmonary endothelial inflammation
and barrier dysfunction.

These findings will serve to increase the understanding of the pathogenesis of
pulmonary endothelial dysfunction. Moreover, due to opportunities to identify novel
therapeutic and preventive targets, our results may provide relevant information for future
clinical interventions of ALI and ARDS.

Materials and Methods

Cell culture, LPS treatment, and RNA isolation

Human pulmonary microvascular endothelial cells (HPMECs, ScienCell, San Diego, CA, USA) were
cultured in endothelial cell medium (ECM, ScienCell, San Diego, CA, USA) in a humidified 5% CO, incubator
at 37°C. LPS (Sigma, St Louis, MO, USA) from Escherichia coli 0111:B4 was dissolved in sterile water and
prepared fresh at the time of use. At approximately 90% confluence in culture, HPMECs were starved for 1
hour (h) in serum-free medium and then stimulated for 4 h with LPS (1 pg/ml) or vehicle control (PBS) in
ECM containing 1% FBS as previously described [14] [21] [25]. HPMECs were used in passage numbers 4
to 6. Total RNA was isolated using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). The quality of the RNA
preparations was verified on an Agilent 2100 bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

Microarray analysis

Total RNA was hybridized to Affymetrix Human Transcriptome Array 2.0 (Affymetrix, Santa Clara,
CA, USA). Hybridized data were preprocessed and statistically analyzed as described previously [26, 27].
Differentially expressed IncRNAs and mRNAs were identified by fold-change screening at a threshold of 2.0-
fold or greater and a p value < 0.05.
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GO and KEGG pathway analyses ~ Table 1. Primers designed for real-time PCR of candidate IncRNAs
GO analysis (http://www.  and mRNAs. Tm: temperature. bp: base pair
geneontology.org) was performed

Primer name Primer FW (5'-3") Primer RW (5'-3") Tm Product length
to explore functions of genes based n384765 AGATGGAAAGGGGTGCTTGG GCAGAGTGTGAGAAGGGTGG 60 119
n344917 ACTCCAAGGCGTTTTTCCAC GGAAGCCTCGACCCTGTATTG 60 104
on the biological pathway, cellular XLOC_12.015215 GCTCATCACACAGAACTTTTCTCA AGAACAAAATACTCTGGGGAGAAG 60 103
component and molecular function n340107 GTCCTCCTCATCTTCCTCTTCC ACAGGCTCATCAGTTAGCATCT 60 100
n407205 GAGGAACACTGGGTTGGACT TGCCACCCTGGGGAATATAAAG 60 117
categories; KyOtO Encyclopedia NR_001564 ATTTCTTACTCTCTCGGGGCTG CCATAAAGGGTGTTGGGGGA 60 100
SELE AGCCTTCAGTGTACCTCATCT GCACCTCACAGAGCCATTC 60 105
of Genes and Genomes (KEGG) IL8 TTCTAGGACAAGAGCCAGGAAG ATCAGGAAGGCTGCCAAGAG 60 102
. . VCAM1 ATACCCTCCCAGGCACACA CTCCAAGGATCACGACCATCT 60 111
(http.//www.genome.]p/kegg/) ICAM1 ATGCCCAGACATCTGTGTCC GGGGTCTCTATGCCCAACAA 60 112
ana]ysis was performed to CXCL10 ATATGGCACACTAGCCCCAC GATTCATGGTGCTGAGACTGGA 60 100
. e MMP10 TTACATTGCTAGGCGAGATAGG CAGTCACAGAACATGCAGGAA 60 120
determine pathways Slgnlflcantly ABI3BP GGCAGCAATGTATCACCAAAC GAGCAGGTCGCACAACTATC 60 109
enriched in genes. P <0.05 and FDR TRPC6 AGGATGACGCTGATGTGGAG GGACTCGGCACCAGATTGA 60 106

< 0.05 were used as thresholds to
define significantly enriched GO
terms or pathways.

Real-time PCR

A FastQuant RT Kit (Tiangen, Beijing, China) was used to reverse transcribe total RNA into cDNA
following the manufacturer’s directions. Real-time PCR was performed using SuperReal PreMix Plus (SYBR
Green) (Tiangen, Beijing, China) in the Applied Biosystems GeneAmp® PCR System 9700. The reaction
conditions were as follows: incubation at 95°C for 15 min, followed by 40 cycles of 95°C for 10 s and 60°C
for 20 s. The relative expression levels of IncRNAs were calculated using the 2*“method and normalized to
GAPDH levels [28]. The primers for each IncRNA and mRNA are listed in Table 1.

LncRNA-mRNA coexpression network

A IncRNA-mRNA coexpression network was constructed to identify the interactions between IncRNA
and mRNA according to the normalized signal intensity of specific mRNA and IncRNA expression levels as
described previously [29, 30].

TF-IncRNA network

Transcription factors (TFs) and DNA sequence motifs from 2.0 kilobase upstream of the transcription
start site of differentially expressed IncRNAs were predicted with the TRANSFACT professional database
(http://gene-regulation.com/). TFs with a matrix score and core score equal to 1 were selected.

Statistical analysis

All data are expressed as the mean * SEM. For comparisons between 2 groups, unpaired Student’s
t-test for parametric data and Mann-Whitney’s U-test for nonparametric data were used. All statistical
analyses were performed with GraphPad Prism 7.04 (GraphPad Software, San Diego, CA, USA). A p value <
0.05 was considered statistically significant.

Results

Profiles of the differentially expressed IncRNAs and mRNAs

To evaluate the differential expression of IncRNAs in HPMECs stimulated with LPS, we
performed microarray analysis of the IncRNA expression profile using Affymetrix Human
Transcriptome Array 2.0, which covers 245, 349 coding transcripts and 40, 914 noncoding
transcripts.

We found that 213 IncRNAs were significantly differentially expressed (fold change >
2.0, p < 0.05). Of these, 189 IncRNAs were upregulated and 28 IncRNAs were downregulated
(Fig. 1A, Fig. 1C). The top 20 most significantly upregulated (Table 2) and downregulated
(Table 3) IncRNAs are listed below. At the same time, 212 mRNAs were significantly
differentially expressed (fold change > 2.0, p < 0.05), including 183 upregulated mRNAs
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Fig. 1. Volcano plots, expression profiles and chromosome distribution of differentially expressed IncRNAs
and mRNAs in HPMECs treated with LPS. Volcano plots of differentially expressed IncRNAs (A) and mRNAs
(B). Gray dots indicate no change. Blue and red dots indicate significantly downregulated and upregulated
IncRNAs and mRNAs, respectively. Hierarchical clustering indicates IncRNA (C) and mRNA (D) profiles.
Red and blue columns refer to high and low relative expression, respectively. Distribution of differentially
expressed IncRNAs (E) and mRNAs (F).
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chromosome number. LPS 1 to 3 and Ctrl 1 to 3: normalized gene signals of each sample

Accession Pvalue Fold Chr Genestart Geneend LPS1 LPS2 LPS3 Ctrl Ctrl Ctrl
n409266 0.00003 10.6 chr3 14591012 14596896 104 10.5 106 7.30 7.00 7.20
n337322 0.00003 14.8 chrl 10266777 10266807 113 113 113 7.65 7.14 7.51
XLOC_008278 0.00003 9.43 chrY 3904538 3968361 8.13 8.25 8.07 4.67 5.05 5.02
n334140 0.00003 9.76 chrl 43013360 43025500 10.0 9.86 10.0 643 692 6.65
XLOC_12_015215 0.00004 4.89 chr9 68773916 68778906 7.14 7.28 736 5.00 491 5.00
NR_001545 0.00004 5.77 chrY 14774265 14804162 530 536 556 279 296 2.88
n334090 0.00004 5.13 chr3 13923725 13925844 8.67 8.56 847 6.11 6.17 6.35
n344917 0.00005 4.16 chr6 86386800 86388112 580 592 595 378 3.81 392
XLOC_006856 0.00005 16.6 chr8 79854913 79855506 7.06 792 7.67 3.62 345 341
n407205 0.00005 6.95 chrl1 9906735 9913497 5.68 578 596 3.04 281 3.19
ENST000004359 0.00005 3.52 chr6 74779167 75400443 5.12 5.09 5.08 335 330 3.20
n339794 0.00006 4.03 chrl 10731474 10773583 7.76 7.76 784 573 567 593
n408177 0.00006 5.09 chrY 16636454 16955848 6.78 6.60 6.53 4.23 448 4.16
ENST000004280 0.00006 11.6 chr9 13446525 13487510 7.47 741 781 384 3.74 448
n334095 0.00007 11.0 <chrl1 10396161 10396374 10.7 108 11.0 7.64 691 7.63
ENST000004266  0.00007 7.63 chrY 3904538 3968361 7.07 7.63 7.55 4.29 4.70 4.47
ENST000003845  0.00008 4.17 chrl 15244554 15244653 5.69 5.73 572 386 3.50 3.60
ENST000005179 0.00008 4.02 chr5 15989524 15991470 5.65 5.83 596 385 3.72 3.86
n337555 0.00009 9.08 chrY 15470990 15471751 6.51 6.76 706 3.78 3.23 3.78
n334787 0.00009 31.1 chr4 74608856 74609068 6.47 581 738 128 1.52 1.61

Table 3. Top 20 significantly downregulated IncRNAs in HPMECs treated with LPS. Fold: fold change. Chr:

chromosome number. LPS 1 to 3 and Ctrl 1 to 3: normalized gene signals of each sample

Accession Pvalue Fold Chr  Genestart Gene end LPS LPS LPS Ctrl Ctrl2 Ctrl3
NR_001564 0.00002 - chrX 73040486 73072588 3.24 3.20 3.00 871 8.72 8.90
ENST000004244  0.00006 -3.98 chrX 3809479 3838787 532 544 551 742 731 753
ENST000003811  0.00007 -4.61 chrX 3847910 3855896 5.00 4.65 4.70 7.02 699 6.95
XLOC_010145 0.00007 -4.04 «chrl 88775675 88813029 3.57 3.66 346 571 549 552
ENST000003811  0.00009 -3.50 chrX 3771051 3800358 5.68 578 582 7.54 748 7.70
n340852 0.00010 -2.53 <chr6 13358067 13361194 6.06 6.05 599 736 7.39 7.39
XLOC_I12_015669 0.00014 -3.35 chrX 3820107 3855883 547 536 548 7.18 7.02 7.35
NR_039968 0.00018 -2.46 chr5 72174418 72174490 4.09 4.19 4.04 530 5.46 5.46
XLOC_008015 0.00023 -293 chrX 73070670 73072528 349 3.58 4.02 528 525 520
NR_034031 0.00025 -2.18 chrX 3734598 3761935 548 5.72 568 671 6.67 6.86
n335593 0.00030 -2.12 chrl 20944648 20945246 8.87 892 898 9.83 10.0 10.1
XLOC_12_006085 0.00033 -2.38 chrl 41426870 41428223 435 4.07 4.11 520 5.49 5.60
XLOC_12_015668 0.00040 -2.34 chrX 3782439 3799884 549 546 568 659 6.64 7.08
n342704 0.00053 -2.87 chrl 41437409 41438729 4.41 4.09 4.08 544 545 6.24
n337065 0.00057 -2.58 «chr5 69372740 69373356 4.81 5.22 555 639 644 6.84
n334398 0.00064 -2.02 chrl 59479134 59480524 5,55 5.79 592 6.78 6.99 6.54
NR_037504 0.00066 -2.07 chr6 16741129 16741140 4.73 441 424 529 563 559
XLOC_002531 0.00073 -2.04 <chr2 23833756 23834346 3.84 3.61 4.23 5.01 482 492
n336284 0.00074 -2.20 chrl 82761080 82761299 3.14 3.71 330 431 482 443
ENST000005072  0.00075 -2.06 chr5 33424131 33440725 4.32 3.76 433 5.06 527 520

and 29 downregulated mRNAs (Fig. 1B, Fig. 1D). The top 20 most significantly upregulated
(Table 4) and downregulated (Table 5) mRNAs are listed below.

Although differentially expressed IncRNAs and mRNAs were widely scattered among
all chromosomes, the distribution was not equal (Fig. 1E, Fig. 1F). Chromosome 1 and
chromosome 6 had the largest number of differentially expressed mRNAs and IncRNAs,
respectively. Chromosome X had the largest number of downregulated IncRNAs. Fifty-two

differentially expressed IncRNAs could not be assigned to corresponding chromosomes.
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Table 4. Top 20 significantly upregulated mRNAs in HPMECs treated with LPS. Fold: fold change. Chr:
chromosome number. LPS 1 to 3 and Ctrl 1 to 3: normalized gene signals of each sample

Accession number Gene symbol P value Fold Chr LPS1 LPS2 LPS3 Ctrll Ctrl2 Ctrl3

NM_000450 SELE 0.000051 86.46 chrl 10.77 10.79 1097 4.37 413 472
NM_000584 IL8 0.000056 38.87 chr4 8.87 8.83 9.20 393 352 361
NM_173054 RELN 0.000061 19.37 chr7 9.97 997 1016 588 555 583
NM_001078 VCAM1 0.000066 19.21 chrl 7.79 7.95 811 3.73 353 381
NM_006398 UBD 0.000071 17.98 chr6 8.08 7.86 795 3,62 386 390
NM_001511 CXCL1 0.000075 16.19 chr4 9.14  9.30 944 534 527 522
NM_177531 PKHD1L1 0.00008 16.40 chr8 7.12 7.34 7.57 326 327 340
NM_001130046 CCL20 0.000085 18.04 chr2 6.57 6.94 7.01 2.78 247 275
NM_001775 CD38 0.00009 15.38 chr4 7.71 7.90 818 397 4.02 397
NM_001565 CXCL10 0.000095 18.10 chr4 6.94 7.18 7.05 271 268 3.25
NM_001145938 MMP1 0.000114 17.17 <chr11 1053 10.56 10.66 6.79 6.09 6.56
NM_001128304 PLSCR4 0.000129 10.48 chr3 999 10.04 1029 685 653 6.77
NM_000072 CD36 0.000134 7.82 chr7 5.58 5.84 593 284 277 283
NM_000201 ICAM1 0.000139 771 chr19 10.53 10.53 1056 7.83 7.48 747
NM_001008 RPS4Y1 0.000148  7.20 chrY  6.59 6.92 687 388 398 396
NM_001006624 PDPN 0.000153 6.74  chrl 8.51 8.50 856 576 593 5.62
NM_014398 LAMP3 0.000158 5.78  chr3 7.90 791 8.09 547 540 544
NM_001781 CD69 0.000163 6.69 chri2 5.54 5.66 575 3.02 268 3.02
NM_001122665 DDX3Y 0.000168 6.86 chrY 6.25 6.39 6.75 3.67 3.61 3.77
NM_001712 CEACAM1 0.000173 597 chr19 8.24 8.21 823 558 588 548

Table 5. Top 20 significantly downregulated mRNAs in HPMECs treated with LPS. Fold: fold change. Chr:
chromosome number. LPS 1 to 3 and Ctrl 1 to 3: normalized gene signals of each sample

Accession number Gene symbol P value Fold Chr LPS1 LPS2 LPS3 Ctrll Ctrl2 Ctrl3

NM_001008540 CXCR4 0.000246 -4.21 chr2 727 716 720 930 9.09 946
NM_001130140 ERAP2 0.00046 -3.26 chr5 497 525 524 672 681 7.04
NM_018659 CYTL1 0.000528 -3.17 chr4 824 818 811 957 990 10.05
NM_019035 PCDH18 0.000586 -2.72 chr4 554 558 546 684 7.11 6.96
BC056414 PLVAP 0.000601 -2.58 chrl9 694 684 689 818 839 819
NM_004476 FOLH1 0.000703 -2.37 «chrll 445 431 442 561 555 576
NM_153696 FOLH1B 0.000708 -2.48 «chrll 356 3.72 3.68 499 476 514
NM_006366 CAP2 0.000722 -231 <chr6 575 564 587 697 691 7.00
NM_021194 SLC30A1 0.00079 -3.13 chrl 6.01 590 6.09 695 796 8.02
NM_001198 PRDM1 0.000839 -245 chr6 552 558 558 710 650 6.95
NM_001242628 GFOD1 0.000844 -2.08 <chr6 619 616 6.09 715 725 7.20
NM_001199989 RASD1 0.000854 -2.21 chrl7 492 485 493 585 6.09 6.19
NM_003654 CHST1 0.000888 -2.04 «chri1 719 7.23 7.12 815 822 824
NM_001114403 UPK3BL 0.000897 -2.10 chr7 810 8.03 794 9.04 9.04 9.19
NM_006208 ENPP1 0.001009 -2.20 <chr6 439 454 451 537 555 593
NM_004701 CCNB2 0.001019 -2.32 chrl5 547 563 566 639 688 714
NM_021958 HLX 0.001063 -2.02 <chrl 6.73 6.67 647 7.67 774 7.52
NM_003525 HIST1H2BI  0.001072 -241 <chr6 544 533 552 626 6.64 719
NM_003537 HIST1H3B  0.001077 -246 chr6 579 575 583 658 7.06 761
NM_004460 FAP 0.001131 -2.01 chr2 388 385 4.04 488 479 512

GO and KEGG enrichment analyses

To explore the role of differentially expressed mRNAs in HPMECs treated with LPS, we
performed GO and KEGG pathway enrichment analysis.

The results showed that upregulated genes were mainly associated with the following
functions: response to lipopolysaccharide (ontology: biological process), integrin complex
(ontology: cellular component), and cytokine activity (ontology: molecular function) (Fig.
2A). Downregulated genes were mainly associated with the following functions: male
pronucleus (ontology: cellular component), C-terminal protein deglutamylation (ontology:
biological process), and exopeptidase activity (ontology: molecular function) (Fig. 2B). The
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Fig. 2. GO and KEGG enrichment analyses for upregulated and downregulated mRNAs. GO enrichment
analysis of upregulated (A) and downregulated (B) genes (Top 10, p<0.05). KEGG enrichment analysis for
upregulated (C) and downregulated (D) genes (p<0.05). The red to green colors indicate high to low -log (p
value) levels. Point size indicates the number of differentially expressed genes in the corresponding pathway.

results also indicated that upregulated genes were mainly associated with the following
pathways: TNF signaling pathway, cytokine-cytokine receptor interaction, rheumatoid
arthritis, NOD-like receptor signaling pathway, and cell adhesion molecules (CAMs) (Fig.
2C). The five most enriched pathways of downregulated genes were mineral absorption,
progesterone-mediated oocyte maturation, riboflavin metabolism, cell cycle, and systemic
lupus erythematosus (Fig. 2D).

These data suggested that upregulated mRNAs may directly participate in the process of
pulmonary endothelial inflammation and barrier dysfunction.

LncRNA-mRNA coexpression networks with GO and KEGG enrichment analysis

To explore the potential biological functions of IncRNAs in HPMECs treated with LPS,
we constructed a IncRNA-mRNA coexpression network based on 72 differentially expressed
IncRNAs and 132 interacting differentially expressed mRNAs (Fig. 3A). Then, we performed
GO and KEGG pathway enrichment analysis on the 132 mRNAs. We found that the most
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Fig. 3. Coexpression network of 72 differentially expressed IncRNAs and 132 interacting differentially
expressed mRNAs with GO and KEGG analysis results. Coexpression network (A) of 72 IncRNAs and 132
interacting mRNAs. The diamonds represent IncRNAs, and the circles represent their correlated mRNAs.
Blue dots and red dots indicate downregulated and upregulated IncRNAs and mRNAs. GO enrichment
analysis (B) and KEGG enrichment analysis (C) of the 132 differentially expressed mRNAs (p<0.05).

enriched GOs were leukocyte migration (ontology: biological process), cytokine activity
(ontology: molecular function), and external side of plasma membrane (ontology: cellular
component) (Fig. 3B). The results also indicated that the 132 mRNAs were mainly associated
with the following pathways: TNF signaling pathway, NF-kB signaling pathway, CAMs,
cytokine-cytokine receptor interaction, and ECM-receptor interaction (Fig. 3C).

Real-time PCR validation of the microarray data

To validate the reliability of the microarray analysis results and to provide a research
basis for further study, the expression levels of 6 IncRNAs (MIR3142HG, n344917, XLOC_
12_015215,n340107,n407205 and XIST) and 8 mRNAs (SELE, IL8, VCAM1, ICAM1, CXCL10,
MMP10, ABI3BP and TRPC6) were determined by real-time PCR (Fig. 4). The results showed
that MIR3142HG, XLOC_12_015215,n340107 and n407205 were upregulated, whereas XIST
was significantly downregulated. The expression of n344917 showed no significant change.
SELE, IL8, VCAM1, ICAM1, CXCL10, MMP10, ABI3BP and TRPC6 were upregulated.

These data suggest that the expression levels of selected IncRNAs and mRNAs, except for
n344917, detected by real-time PCR were similar to those detected by microarray analysis.
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TFE-IncRNA regulatory network

To understand the reason for the differential expression of the five validated IncRNAs
(MIR3142HG, XLOC_12_015215, n340107, n407205 and XIST), we predicted TFs mapping
to these IncRNAs in the TRANSFACT professional database. The results showed that of the
214 TFs mapping to these IncRNAs (Fig. 5), 17 out of the 214 TFs were differently expressed
(fold change > 1.2, p < 0.05). Seven differentially expressed TFs were predicted to regulate
the transcription of XIST (Table 6), including 2 upregulated TFs (POU2F2 and BCL6) and 5
downregulated mRNAs (SOX18, MEF2C, SOX17, HOXB5 and ETS2). These findings indicate
that differently expressed TFs might be one of the causes of the differential expression of

IncRNAs.

Discussion

In this study, we established an experimental model of pulmonary endothelial
inflammation and barrier dysfunction by stimulating HPMECs with LPS and investigated the
expression profile of IncRNAs and mRNAs by microarray analysis. The results indicate that
IncRNAs play an important role in LPS-induced pulmonary endothelial inflammation and

barrier dysfunction.
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Table 6. Differentially expressed TFs predicted to regulate the transcription of XIST. Range: the promoter
region of XIST. Position: the position of the transcription start site. Sequence: the TF binding sequences in
the promoter region

IncRNA Range Transcription factor Relation Position  sequence
XIST chrX:-:73852253-73854253 S0X18 down 690 CAATGgg
XIST chrX:-:73852253-73854253 S0X18 down 724 gaCATTG
XIST chrX:-:73852253-73854253 S0X18 down 1536 CAATGgc
XIST chrX:-:73852253-73854253 MEF2C down 8 aaAAATA
XIST chrX:-:73852253-73854253 MEF2C down 94 aaAAATA
XIST chrX:-:73852253-73854253 MEF2C down 265 aaAAATA
XIST chrX:-:73852253-73854253 MEF2C down 317 aaAAATA
XIST chrX:-:73852253-73854253 MEF2C down 1665 aaAAATA
XIST chrX:-:73852253-73854253 S0X17 down 597 gGACAA
XIST chrX:-:73852253-73854253 HOXB5 down 743 aatAATTAat
XIST chrX:-:73852253-73854253 ETS2 down 428 caGGAAG
XIST chrX:-:73852253-73854253 POU2F2 up 1678 TATGCaaat
XIST chrX:-:73852253-73854253 BCL6 up 391 ttctAGAAAg
XIST chrX:-:73852253-73854253 BCL6 up 1565 ttctAGAAAgE

An overwhelming majority of the transcriptions of the human genome are ncRNAs,
which act as important transcriptional regulators in pathophysiologic processes [31-33].
In contrast to miRNAs, which regulate target genes by a posttranscriptional mechanism
[34, 35], IncRNAs have the potential to regulate gene expression at posttranscriptional,
transcriptional and epigenetic levels [36-39]. Furthermore, many IncRNAs have shown
developmental stage-specific and tissue-specific expression patterns [40, 41].

The roles of ncRNAs in the pathogenesis of ALI and ARDS have attracted increasing
attention. Recent studies have demonstrated that several miRNAs, such as miR-146, miR-
155, and miR-221, serve as important regulators of inflammation-related mediators [33].
Hongbin Li et al. reported that the IncRNA CASC2 improved ALI by reducing lung epithelial
cell apoptosis [42]. However, the function of IncRNA has not been investigated in pulmonary
vascular injury associated with ALI and ARDS. Unlike two previous studies that analyzed the
IncRNA expression profile in human umbilical vein endothelial cells [43] and human dermal
microvascular endothelial cells [44] exposed to LPS, we identified the expression of LPS-
responsive IncRNAs in HPMECs to investigate the role of IncRNAs in pulmonary endothelial
injury.

In the present study, we determined the expression of 6 IncRNAs and 8 mRNAs by real-
time PCR. The selection of these IncRNAs and mRNAs was based on the fold change and
degree data in the IncRNA-mRNA coexpression network. Our results showed that the IncRNA
and mRNA expression results determined by microarray analysis had good reliability and
reproducibility. LPS successfully activated HPMECs because the expression of SELE, IL-8,
VCAM-1, CCL20 and ICAM-1 increased significantly in the experimental model [45-47]. In
addition, GO and KEGG pathway enrichment analyses also suggested that the differentially
expressed mRNAs participated in pulmonary endothelial inflammation and barrier
dysfunction. Notably, based on GO and KEGG pathway enrichment analyses of the IncRNA-
mRNA coexpression network, we found that 72 differentially expressed IncRNAs might be
mainly involved in the TNF signaling pathway, NF-kB signaling pathway, CAMs, cytokine-
cytokine receptor interactions, and ECM-receptor interactions [48, 49]. Thus, we speculated
that these IncRNAs might be associated with pulmonary endothelial inflammation and
barrier dysfunction. Furthermore, we predicted differentially expressed TFs mapping to five
selected IncRNAs that had been verified by real-time PCR with the help of the TRANSFAC
professional database. The results suggested that differently expressed TFs might be one of
the causes of the differential expression of IncRNAs.
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The understanding of the diversity of gene regulation has greatly expanded in the past
decade. There is increasing recognition that ncRNAs are important components of the gene
regulatory network [50]. As the roles of IncRNAs become clearer, the knowledge acquired by
this research will enable the understanding of how IncRNAs affect the initiation, progression,
and resolution of pulmonary endothelial dysfunction associated with ALI and ARDS. Our
data still need to be further validated in both vitro and vivo.

XIST, which is the master regulator of X chromosome inactivation, has been reported
to play an important role in the pathogenesis of many diseases [51, 52]. H Yu et al. reported
that XIST inhibition increased the blood-tumor barrier permeability in glioma endothelial
cells [53]. Here, we found that XIST was significantly downregulated in HPMECs exposed
to LPS by both microarray data and real-time PCR. This is the first study to determine the
expression of XIST in HPMECs. The results may be helpful for further insights into the
underlying role and mechanism of XIST in pulmonary endothelial inflammation and barrier
dysfunction. The detailed function of XIST in pulmonary endothelial injury still needs to be
further investigated.

Although not a genetic disease, ARDS has a certain hereditary susceptibility [54]. Three
retrospective studies reported that men were at higher risk than women of incidence and
mortality from ARDS [55-57]. In this study, we found that the distribution of differentially
expressed IncRNAs was not equal. Interestingly, most differentially expressed IncRNAs
on chromosome X were downregulated, while all differentially expressed IncRNAs on
chromosome Y were upregulated. We speculate that the differential expression of IncRNAs
on chromosomes X and Y may be one of the causes of sex-related differences in the morbidity
and mortality of ARDS. Of course, this subject still requires more clinical research and further
investigations.

Conclusion

In conclusion, we investigated the expression of IncRNAs and mRNAs in HPMECs treated
with LPS by microarray analysis. We found that IncRNAs may be involved in LPS-induced
pulmonary endothelial inflammation and barrier dysfunction. This is the first study to reveal
the expression profile and potential role of IncRNAs in HPMECs. These findings provide a
novel direction for both basic and clinical research for ALI and ARDS. Due to opportunities
to identify novel therapeutic and preventive targets, our results may provide relevant
information for future clinical interventions of ALI and ARDS.
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