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Abstract
Background/Aims: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) 
are a continuum of life-threatening lung changes. Pulmonary vascular injury is one of the most 
important initial causes of ALI and ARDS. However, the functions of long noncoding RNAs 
(lncRNAs) in pulmonary endothelial injury remain largely unknown. The aim of the present 
study was to determine the lncRNA expression profile of human pulmonary microvascular 
endothelial cells (HPMECs) exposed to lipopolysaccharide (LPS) and explore the potential 
functions of differentially expressed lncRNAs. Methods: Microarray analysis was used to 
identify differentially expressed lncRNAs and mRNAs. Bioinformatics analyses, including Gene 
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, lncRNA-mRNA 
coexpression network and transcription factor (TF)-lncRNA network analyses, were performed 
to predict the functions of significantly differentially expressed lncRNAs and mRNAs. Real-
time polymerase chain reaction (PCR) was used to determine the expression of selected 
lncRNAs and mRNAs. Results: In this study, we found that 213 lncRNAs and 212 mRNAs were 
significantly differentially expressed in HPMECs exposed to LPS (fold change > 2.0, p < 0.05). 
Furthermore, we found that mRNAs co-expressed with lncRNAs were significantly enriched 
in the TNF signaling pathway, the NF-κB signaling pathway, cell adhesion molecules (CAMs), 
cytokine-cytokine receptor interactions, and extracellular matrix (ECM)-receptor interactions. 
The expression levels of all but one of the selected lncRNAs and mRNAs detected by real-time 
PCR were similar to those detected by microarray analysis. Conclusion: Our data indicate 
that lncRNAs play an important role in LPS-induced pulmonary endothelial inflammation and 
barrier dysfunction and may be potential preventive and therapeutic targets for ALI and ARDS.
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Introduction

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are part of a 
continuum of life-threatening lung changes that interfere with the diffusion of oxygen from 
alveoli into the blood [1-4]. Sepsis and pneumonia are the most common causes of ARDS, 
and pulmonary vascular injury is one of the most important initial causes of ALI and ARDS. 
ARDS accounts for 10% of intensive care unit admissions globally. Despite years of basic and 
clinical studies, the global mortality of ARDS has been as high as 40% in recent years [5, 6]. 
For these reasons, the identification of key molecules involved in ARDS is highly demanded 
for improving the clinical outcome of this syndrome.

It is now generally accepted that the majority of mammalian RNA transcripts are 
noncoding RNAs (ncRNAs). Long noncoding RNAs (lncRNAs), which are longer than 200 
nucleotides, are generally not translated into proteins [7-10]. By regulating gene expression 
at posttranscriptional, transcriptional and epigenetic stages, lncRNAs participate in most 
essential biological processes. Over the past decade, the study of lncRNAs has become a hot 
spot in basic and clinical research of ALI and ARDS. Recent studies have shown that miRNAs 
are involved in the pathophysiology of ARDS and may be interesting diagnostic biomarkers 
and therapeutic targets [11-20]. However, less is known about the role of lncRNAs in the 
pathogenesis of ALI and ARDS.

To study the function of lncRNAs in the pathogenesis of ALI and ARDS, we established 
an experimental model of pulmonary endothelial inflammation and barrier dysfunction by 
stimulating HPMECs with LPS [21-24] and investigated the expression profile of lncRNAs and 
mRNAs by microarray analysis. We found that 213 lncRNAs and 212 mRNAs were significantly 
differentially expressed. Bioinformatics analyses indicated that the differentially expressed 
lncRNAs might play an important role in LPS-induced pulmonary endothelial inflammation 
and barrier dysfunction.

These findings will serve to increase the understanding of the pathogenesis of 
pulmonary endothelial dysfunction. Moreover, due to opportunities to identify novel 
therapeutic and preventive targets, our results may provide relevant information for future 
clinical interventions of ALI and ARDS.

Materials and Methods

Cell culture, LPS treatment, and RNA isolation
Human pulmonary microvascular endothelial cells (HPMECs, ScienCell, San Diego, CA, USA) were 

cultured in endothelial cell medium (ECM, ScienCell, San Diego, CA, USA) in a humidified 5% CO2 incubator 
at 37°C. LPS (Sigma, St Louis, MO, USA) from Escherichia coli O111:B4 was dissolved in sterile water and 
prepared fresh at the time of use. At approximately 90% confluence in culture, HPMECs were starved for 1 
hour (h) in serum-free medium and then stimulated for 4 h with LPS (1 µg/ml) or vehicle control (PBS) in 
ECM containing 1% FBS as previously described [14] [21] [25]. HPMECs were used in passage numbers 4 
to 6. Total RNA was isolated using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). The quality of the RNA 
preparations was verified on an Agilent 2100 bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

Microarray analysis
Total RNA was hybridized to Affymetrix Human Transcriptome Array 2.0 (Affymetrix, Santa Clara, 

CA, USA). Hybridized data were preprocessed and statistically analyzed as described previously [26, 27]. 
Differentially expressed lncRNAs and mRNAs were identified by fold-change screening at a threshold of 2.0-
fold or greater and a p value < 0.05.
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GO and KEGG pathway analyses
GO analysis (http://www.

geneontology.org) was performed 
to explore functions of genes based 
on the biological pathway, cellular 
component and molecular function 
categories; Kyoto Encyclopedia 
of Genes and Genomes (KEGG) 
(http://www.genome.jp/kegg/) 
analysis was performed to 
determine pathways significantly 
enriched in genes. P < 0.05 and FDR 
< 0.05 were used as thresholds to 
define significantly enriched GO 
terms or pathways.

Real-time PCR
A FastQuant RT Kit (Tiangen, Beijing, China) was used to reverse transcribe total RNA into cDNA 

following the manufacturer’s directions. Real-time PCR was performed using SuperReal PreMix Plus (SYBR 
Green) (Tiangen, Beijing, China) in the Applied Biosystems GeneAmp® PCR System 9700. The reaction 
conditions were as follows: incubation at 95°C for 15 min, followed by 40 cycles of 95°C for 10 s and 60°C 
for 20 s. The relative expression levels of lncRNAs were calculated using the 2-ΔΔCt method and normalized to 
GAPDH levels [28]. The primers for each lncRNA and mRNA are listed in Table 1.

LncRNA-mRNA coexpression network
A lncRNA-mRNA coexpression network was constructed to identify the interactions between lncRNA 

and mRNA according to the normalized signal intensity of specific mRNA and lncRNA expression levels as 
described previously [29, 30].

TF-lncRNA network
Transcription factors (TFs) and DNA sequence motifs from 2.0 kilobase upstream of the transcription 

start site of differentially expressed lncRNAs were predicted with the TRANSFACT professional database 
(http://gene-regulation.com/). TFs with a matrix score and core score equal to 1 were selected.

Statistical analysis
All data are expressed as the mean ± SEM. For comparisons between 2 groups, unpaired Student’s 

t-test for parametric data and Mann-Whitney’s U-test for nonparametric data were used. All statistical 
analyses were performed with GraphPad Prism 7.04 (GraphPad Software, San Diego, CA, USA). A p value < 
0.05 was considered statistically significant.

Results

Profiles of the differentially expressed lncRNAs and mRNAs
To evaluate the differential expression of lncRNAs in HPMECs stimulated with LPS, we 

performed microarray analysis of the lncRNA expression profile using Affymetrix Human 
Transcriptome Array 2.0, which covers 245, 349 coding transcripts and 40, 914 noncoding 
transcripts.

We found that 213 lncRNAs were significantly differentially expressed (fold change > 
2.0, p < 0.05). Of these, 189 lncRNAs were upregulated and 28 lncRNAs were downregulated 
(Fig. 1A, Fig. 1C). The top 20 most significantly upregulated (Table 2) and downregulated 
(Table 3) lncRNAs are listed below. At the same time, 212 mRNAs were significantly 
differentially expressed (fold change > 2.0, p < 0.05), including 183 upregulated mRNAs 

Table 1. Primers designed for real-time PCR of candidate lncRNAs 
and mRNAs. Tm: temperature. bp: base pair
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Fig. 1. Volcano plots, expression profiles and chromosome distribution of differentially expressed lncRNAs 
and mRNAs in HPMECs treated with LPS. Volcano plots of differentially expressed lncRNAs (A) and mRNAs 
(B). Gray dots indicate no change. Blue and red dots indicate significantly downregulated and upregulated 
lncRNAs and mRNAs, respectively. Hierarchical clustering indicates lncRNA (C) and mRNA (D) profiles. 
Red and blue columns refer to high and low relative expression, respectively. Distribution of differentially 
expressed lncRNAs (E) and mRNAs (F).
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and 29 downregulated mRNAs (Fig. 1B, Fig. 1D). The top 20 most significantly upregulated 
(Table 4) and downregulated (Table 5) mRNAs are listed below.

Although differentially expressed lncRNAs and mRNAs were widely scattered among 
all chromosomes, the distribution was not equal (Fig. 1E, Fig. 1F). Chromosome 1 and 
chromosome 6 had the largest number of differentially expressed mRNAs and lncRNAs, 
respectively. Chromosome X had the largest number of downregulated lncRNAs. Fifty-two 
differentially expressed lncRNAs could not be assigned to corresponding chromosomes.

Table 2. Top 20 significantly upregulated lncRNAs in HPMECs treated with LPS. Fold: fold change. Chr: 
chromosome number. LPS 1 to 3 and Ctrl 1 to 3: normalized gene signals of each sample

Table 3. Top 20 significantly downregulated lncRNAs in HPMECs treated with LPS. Fold: fold change. Chr: 
chromosome number. LPS 1 to 3 and Ctrl 1 to 3: normalized gene signals of each sample
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GO and KEGG enrichment analyses
To explore the role of differentially expressed mRNAs in HPMECs treated with LPS, we 

performed GO and KEGG pathway enrichment analysis.
The results showed that upregulated genes were mainly associated with the following 

functions: response to lipopolysaccharide (ontology: biological process), integrin complex 
(ontology: cellular component), and cytokine activity (ontology: molecular function) (Fig. 
2A). Downregulated genes were mainly associated with the following functions: male 
pronucleus (ontology: cellular component), C-terminal protein deglutamylation (ontology: 
biological process), and exopeptidase activity (ontology: molecular function) (Fig. 2B). The 

Table 4. Top 20 significantly upregulated mRNAs in HPMECs treated with LPS. Fold: fold change. Chr: 
chromosome number. LPS 1 to 3 and Ctrl 1 to 3: normalized gene signals of each sample

Table 5. Top 20 significantly downregulated mRNAs in HPMECs treated with LPS. Fold: fold change. Chr: 
chromosome number. LPS 1 to 3 and Ctrl 1 to 3: normalized gene signals of each sample
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results also indicated that upregulated genes were mainly associated with the following 
pathways: TNF signaling pathway, cytokine-cytokine receptor interaction, rheumatoid 
arthritis, NOD-like receptor signaling pathway, and cell adhesion molecules (CAMs) (Fig. 
2C). The five most enriched pathways of downregulated genes were mineral absorption, 
progesterone-mediated oocyte maturation, riboflavin metabolism, cell cycle, and systemic 
lupus erythematosus (Fig. 2D).

These data suggested that upregulated mRNAs may directly participate in the process of 
pulmonary endothelial inflammation and barrier dysfunction.

LncRNA-mRNA coexpression networks with GO and KEGG enrichment analysis
To explore the potential biological functions of lncRNAs in HPMECs treated with LPS, 

we constructed a lncRNA-mRNA coexpression network based on 72 differentially expressed 
lncRNAs and 132 interacting differentially expressed mRNAs (Fig. 3A). Then, we performed 
GO and KEGG pathway enrichment analysis on the 132 mRNAs. We found that the most 

Fig. 2. GO and KEGG enrichment analyses for upregulated and downregulated mRNAs. GO enrichment 
analysis of upregulated (A) and downregulated (B) genes (Top 10, p<0.05). KEGG enrichment analysis for 
upregulated (C) and downregulated (D) genes (p<0.05). The red to green colors indicate high to low -log (p 
value) levels. Point size indicates the number of differentially expressed genes in the corresponding pathway.
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enriched GOs were leukocyte migration (ontology: biological process), cytokine activity 
(ontology: molecular function), and external side of plasma membrane (ontology: cellular 
component) (Fig. 3B). The results also indicated that the 132 mRNAs were mainly associated 
with the following pathways: TNF signaling pathway, NF-κB signaling pathway, CAMs, 
cytokine-cytokine receptor interaction, and ECM-receptor interaction (Fig. 3C).

Real-time PCR validation of the microarray data
To validate the reliability of the microarray analysis results and to provide a research 

basis for further study, the expression levels of 6 lncRNAs (MIR3142HG, n344917, XLOC_
l2_015215, n340107, n407205 and XIST) and 8 mRNAs (SELE, IL8, VCAM1, ICAM1, CXCL10, 
MMP10, ABI3BP and TRPC6) were determined by real-time PCR (Fig. 4). The results showed 
that MIR3142HG, XLOC_l2_015215, n340107 and n407205 were upregulated, whereas XIST 
was significantly downregulated. The expression of n344917 showed no significant change. 
SELE, IL8, VCAM1, ICAM1, CXCL10, MMP10, ABI3BP and TRPC6 were upregulated.

These data suggest that the expression levels of selected lncRNAs and mRNAs, except for 
n344917, detected by real-time PCR were similar to those detected by microarray analysis.

Fig. 3. Coexpression network of 72 differentially expressed lncRNAs and 132 interacting differentially 
expressed mRNAs with GO and KEGG analysis results. Coexpression network (A) of 72 lncRNAs and 132 
interacting mRNAs. The diamonds represent lncRNAs, and the circles represent their correlated mRNAs. 
Blue dots and red dots indicate downregulated and upregulated lncRNAs and mRNAs. GO enrichment 
analysis (B) and KEGG enrichment analysis (C) of the 132 differentially expressed mRNAs (p<0.05).
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TF-lncRNA regulatory network
To understand the reason for the differential expression of the five validated lncRNAs 

(MIR3142HG, XLOC_l2_015215, n340107, n407205 and XIST), we predicted TFs mapping 
to these lncRNAs in the TRANSFACT professional database. The results showed that of the 
214 TFs mapping to these lncRNAs (Fig. 5), 17 out of the 214 TFs were differently expressed 
(fold change > 1.2, p < 0.05). Seven differentially expressed TFs were predicted to regulate 
the transcription of XIST (Table 6), including 2 upregulated TFs (POU2F2 and BCL6) and 5 
downregulated mRNAs (SOX18, MEF2C, SOX17, HOXB5 and ETS2). These findings indicate 
that differently expressed TFs might be one of the causes of the differential expression of 
lncRNAs.

Discussion

In this study, we established an experimental model of pulmonary endothelial 
inflammation and barrier dysfunction by stimulating HPMECs with LPS and investigated the 
expression profile of lncRNAs and mRNAs by microarray analysis. The results indicate that 
lncRNAs play an important role in LPS-induced pulmonary endothelial inflammation and 
barrier dysfunction.

Fig. 5. TF regulatory network of the five validated lncRNAs. The diamonds represent lncRNAs. Blue and red 
dots indicate downregulated and upregulated lncRNAs. Yellowish triangles represent correlated TFs.
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An overwhelming majority of the transcriptions of the human genome are ncRNAs, 
which act as important transcriptional regulators in pathophysiologic processes [31-33]. 
In contrast to miRNAs, which regulate target genes by a posttranscriptional mechanism 
[34, 35], lncRNAs have the potential to regulate gene expression at posttranscriptional, 
transcriptional and epigenetic levels [36-39]. Furthermore, many lncRNAs have shown 
developmental stage-specific and tissue-specific expression patterns [40, 41].

The roles of ncRNAs in the pathogenesis of ALI and ARDS have attracted increasing 
attention. Recent studies have demonstrated that several miRNAs, such as miR-146, miR-
155, and miR-221, serve as important regulators of inflammation-related mediators [33]. 
Hongbin Li et al. reported that the lncRNA CASC2 improved ALI by reducing lung epithelial 
cell apoptosis [42]. However, the function of lncRNA has not been investigated in pulmonary 
vascular injury associated with ALI and ARDS. Unlike two previous studies that analyzed the 
lncRNA expression profile in human umbilical vein endothelial cells [43] and human dermal 
microvascular endothelial cells [44] exposed to LPS, we identified the expression of LPS-
responsive lncRNAs in HPMECs to investigate the role of lncRNAs in pulmonary endothelial 
injury.

In the present study, we determined the expression of 6 lncRNAs and 8 mRNAs by real-
time PCR. The selection of these lncRNAs and mRNAs was based on the fold change and 
degree data in the lncRNA-mRNA coexpression network. Our results showed that the lncRNA 
and mRNA expression results determined by microarray analysis had good reliability and 
reproducibility. LPS successfully activated HPMECs because the expression of SELE, IL-8, 
VCAM-1, CCL20 and ICAM-1 increased significantly in the experimental model [45-47]. In 
addition, GO and KEGG pathway enrichment analyses also suggested that the differentially 
expressed mRNAs participated in pulmonary endothelial inflammation and barrier 
dysfunction. Notably, based on GO and KEGG pathway enrichment analyses of the lncRNA-
mRNA coexpression network, we found that 72 differentially expressed lncRNAs might be 
mainly involved in the TNF signaling pathway, NF-κB signaling pathway, CAMs, cytokine-
cytokine receptor interactions, and ECM-receptor interactions [48, 49]. Thus, we speculated 
that these lncRNAs might be associated with pulmonary endothelial inflammation and 
barrier dysfunction. Furthermore, we predicted differentially expressed TFs mapping to five 
selected lncRNAs that had been verified by real-time PCR with the help of the TRANSFAC 
professional database. The results suggested that differently expressed TFs might be one of 
the causes of the differential expression of lncRNAs.

Table 6. Differentially expressed TFs predicted to regulate the transcription of XIST. Range: the promoter 
region of XIST. Position: the position of the transcription start site. Sequence: the TF binding sequences in 
the promoter region
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The understanding of the diversity of gene regulation has greatly expanded in the past 
decade. There is increasing recognition that ncRNAs are important components of the gene 
regulatory network [50]. As the roles of lncRNAs become clearer, the knowledge acquired by 
this research will enable the understanding of how lncRNAs affect the initiation, progression, 
and resolution of pulmonary endothelial dysfunction associated with ALI and ARDS. Our 
data still need to be further validated in both vitro and vivo.

XIST, which is the master regulator of X chromosome inactivation, has been reported 
to play an important role in the pathogenesis of many diseases [51, 52]. H Yu et al. reported 
that XIST inhibition increased the blood-tumor barrier permeability in glioma endothelial 
cells [53]. Here, we found that XIST was significantly downregulated in HPMECs exposed 
to LPS by both microarray data and real-time PCR. This is the first study to determine the 
expression of XIST in HPMECs. The results may be helpful for further insights into the 
underlying role and mechanism of XIST in pulmonary endothelial inflammation and barrier 
dysfunction. The detailed function of XIST in pulmonary endothelial injury still needs to be 
further investigated.

Although not a genetic disease, ARDS has a certain hereditary susceptibility [54]. Three 
retrospective studies reported that men were at higher risk than women of incidence and 
mortality from ARDS [55-57]. In this study, we found that the distribution of differentially 
expressed lncRNAs was not equal. Interestingly, most differentially expressed lncRNAs 
on chromosome X were downregulated, while all differentially expressed lncRNAs on 
chromosome Y were upregulated. We speculate that the differential expression of lncRNAs 
on chromosomes X and Y may be one of the causes of sex-related differences in the morbidity 
and mortality of ARDS. Of course, this subject still requires more clinical research and further 
investigations.

Conclusion

In conclusion, we investigated the expression of lncRNAs and mRNAs in HPMECs treated 
with LPS by microarray analysis. We found that lncRNAs may be involved in LPS-induced 
pulmonary endothelial inflammation and barrier dysfunction. This is the first study to reveal 
the expression profile and potential role of lncRNAs in HPMECs. These findings provide a 
novel direction for both basic and clinical research for ALI and ARDS. Due to opportunities 
to identify novel therapeutic and preventive targets, our results may provide relevant 
information for future clinical interventions of ALI and ARDS.
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