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Abstract
Background/Aims: It is well established that oxidative stress and inflammation are common 
pathogenic features of retinal degenerative diseases. ITH12674 is a novel compound that 
induces the transcription factor Nrf2; in so doing, the molecule exhibits anti-inflammatory, 
and antioxidant properties, and affords neuroprotection in rat cortical neurons subjected 
to oxidative stress. We here tested the hypothesis that ITH12674 could slow the retinal 
degeneration that causes blindness in rd10 mice, a model of retinitis pigmentosa. Methods: 
Animals were intraperitoneally treated with 1 or 10 mg/Kg ITH12674 or placebo from P16 
to P30. At P30, retinal functionality and visual acuity were analyzed by electroretinography 
and optomotor test. By immunohistochemistry we quantified the photoreceptor rows and 
analyzed their morphology and connectivity. Oxidative stress and inflammatory state was 
studied by Western blot, and microglia reactivity was monitored by flow cytometry. The 
blood−brain barrier permeation of ITH12674 was evaluated using a PAMPA-BBB assay. 
Results: In rd10 mice treated with 10 mg/Kg of the compound, the following changes were 
observed (with respect to placebo): (i) a decrease of vision loss with higher scotopic a- and 
b-waves; (ii) increased visual acuity; (iii) preservation of cone photoreceptors morphology, as 
well as their synaptic connectivity; (iv) reduced expression of TNF-α and NF-κB; (v) increased 
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expression of p38 MAPK and Atg12-Atg5 complex; and (vi) decreased CD11c, MHC class II and 
CD169 positive cell populations. Conclusion: These data support the view that a Nrf2 inducer 
compound may arise as a new therapeutic strategy to combat retinal neurodegeneration. At 
present, we are chemically optimising compound ITH12674 with the focus on improving its 
neuroprotective potential in retinal neurodegenerative diseases.

Introduction

Retinal photoreceptor degeneration occurs in various pathological disorders such as 
age-related macular degeneration (AMD) or diabetic maculopathy; in these conditions, 
death of macular photoreceptors results in central vision loss. On the other hand, in a third 
pathological entity, retinitis pigmentosa (RP), the widespread photoreceptor degeneration 
across the entire retina ends with total blindness. Disease cell pathogenesis in these 
conditions is incompletely understood; and this is why treatments that slow down or arrest 
disease progression are not yet clinically available [1, 2].

Studies on human retinopathy and in animal models of RP revealed chronic 
neuroinflammation with increasing retinal levels of proinflammatory cytokines [3, 4]. Also, 
microglial infiltration causes photoreceptor loss due to cytokine secretion and apoptosis 
[5, 6]. Hence, agents that mitigate microglial contribution to neuroinflammation and to 
photoreceptor degeneration are promising as potential therapeutic agents in RP [6].

A few studies addressed some targets of RP pathogenesis, in order to look for 
photoreceptor protection. For instance, the modulator of estrogen receptors tamoxifen 
decreased microglia activation and inflammation, with rescue of photoreceptor structure 
and function [7]. Additionally, the natural phenolic acid from Kalimeris indica 3, 
4-dihydroxybenzoate (MDHB), displays antioxidant, antiapoptotic, and neuroprotective 
effects [8]; the compound also affords photoreceptor protection in rd10 mice [9]. Another 
natural compound, sulforaphane, present in cruciferous vegetables such as broccoli, Brussel 
sprouts and cabbages also exhibits antioxidant and antiinflammatory properties; these 
are linked to its ability to activate the nuclear factor erythroid 2-related factor 2 (Nrf2). In 
one study, the compound protected retinal pigment epithelial cells against photooxidative 
damage [10]; in a second study, sulforaphane protected against retinal degeneration in Pde6 
(rd10) RP mice [11].

These results support the hypothesis that the pharmacological induction of Nrf2 
could be a good strategy to mitigate oxidative stress and neuroinflammation, with ensuing 
neuroprotection. In this context, we synthesized compound ITH12674 (C12H12N2SO; Fig. 
1). In a previous in vitro study, the compound decreased the production of reactive oxygen 
species (ROS) with increased glutathione concentrations, and afforded neuroprotection 
against oxidative stress. These effects were associated to Nrf2 induction [12]. As part of a 
program to develop Nrf2 inducers as neuroprotective agents, we planned the present study 
to establish the in vivo proof-of-concept of ITH12674 as neuroprotectant. We therefore 
tested the compound by its chronic administration to RP rd10 mice. We found that indeed, 
ITH12674 afforded retinal neuroprotection in 
the retina of rd10 mice, both at morphological 
and functional levels. These data are essential in 
the frame of our research program of chemical 
ITH12674 optimisation, from the points 
of view of neuroprotective efficacy, and its 
pharmacokinetic-safety profiles.

© 2020 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

Fig. 1. Chemical structure of ITH12674.
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Materials and Methods

Animals
Both male and female homozygous rd10/rd10 mice (B6.CXBI-Pde6brd10/J) were used. Age-matched 

wild- type C57BL/6J mice (Harlan Laboratories, Barcelona, Spain) served as reference. Animals were 
handled and maintained according to current guidelines and regulations for the use of laboratory animals 
(NIH, ARVO and European Directive 2010/63/EU) and comply with the Reporting of in vivo Experiments 
(ARRIVE) guidelines of animal research, in an effort to minimize their suffering and limit the number of 
animals used. All procedures received prior approval from the ethics committee for animal care and use at 
the University of Alicante (UA-07/22/2013). Animals were bred and maintained in the animal facilities of 
the University of Alicante under controlled temperature (23 ± 1 ºC), humidity (60%) and light/dark cycle 
(12:12 h, 50 lux) conditions. Animals were humanely sacrificed at P30 and samples were collected for 
further analysis.

Drug administration
ITH12674 in a water soluble cyclodextrin complex formulation [13] was administered intraperitoneally 

at 1 or 10 mg/kg twice a day from P16 to P30. A total of 26 animals were used, spread in 3 batches: (1) 
control: rd10 mice injected with saline (vehicle) (n=7), (2) ITH 1 mg/kg: rd10 mice treated with 1 mg/kg 
ITH12674 (n=4), (3) ITH 10 mg/kg: rd10 mice treated with 10 mg/kg ITH12674 (n=15).

Electroretinographic records
Scotopic flash-induced ERG responses were recorded in both eyes after treatment completion 

(P30), as described previously [14]. Briefly, following an overnight period of dark adaptation light stimuli 
were administered by a Ganzfeld stimulator for 10 ms at 11 increasing luminances, ranging from −5.2 
to 0  log  cd s/m2. To test the cone contribution to the ERG responses, double flashes with intensity of 0 
log  cd s/m2 and interstimulus intervals of 1 s were applied after each range of single flashes. Around 3 
and 10 consecutive recordings were averaged for each light level. A 10-s interval was provided between 
flashes in the case of dim flashes (−5.2 to −1.4  log  cd s/m2), and up to 20  s for the brightest flashes (−0.8 
to 0  log  cd s/m2). ERG records were amplified and band-pass filtered (1-1000 Hz, without notch filtering) 
using a DAM50 data acquisition board (World Precision Instruments, Aston, UK). A PowerLab system (AD 
Instruments, Oxfordshire, UK) was used for the administration of stimuli and data acquisition (4 kHz). 
The a-wave amplitude was measured from the baseline to the trough of the a-wave. The b-wave amplitude 
measurement was taken from the trough of the a-wave to the peak of the b-wave.

Optomotor test
To evaluate visual parameters, the spatial frequency threshold was assessed for awake, freely moving 

mice at P30. Optomotor responses to horizontally drifting, vertically oriented gratings were observed and 
scored using the Argos system (Instead, Elche, Spain). The spatial frequency threshold of the behavior was 
determined as the maximum spatial frequency at maximum contrast that still induced smooth head tracking 
movements. For testing, a mouse was placed on a platform in the center of a chamber with walls made of 
computer monitors. Sinusoidal gratings were projected for 5 s on all four monitors as a cylinder centered 
on the head, and the virtual cylinder displayed on the monitors was rotated in both horizontal directions. 
The mouse was imaged via an overhead video camera for a trained observer to score smooth head turns 
in response to the rotating gratings. The initial spatial and temporal frequencies of the gratings were 0.088 
cyc/deg and 0.8 Hz, respectively. Each increasing spatial frequency was tested 10 consecutive times, and the 
observed responses were considered positive if tracking movements of the head corresponded to that of the 
drum rotation in at least 80% of the stimuli tested. We observed these tracking responses as being robust at 
middle spatial frequencies and diminishing until they were extinguished at threshold.

Immunohistochemistry
Histological studies of the retinas were performed at P30 following previously well established 

procedures [15]. Briefly, the animals were sacrificed in the morning. After marking the dorsal margin of 
the limbus with a suture, eyes were enucleated and fixed in 4% (w/v) paraformaldehyde during 1 h at 
room temperature. After being washed in 0.1 M phosphate buffer pH 7.4 (PB), eyes were cryoprotected 
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sequentially in 15, 20 and 30% (w/v) sucrose. The cornea, lens and vitreous body were removed, and then 
the eyecups were embedded in Tissue-Tek OCT (Sakura Finetek, Zoeterwouden, Netherlands) and frozen 
in liquid N2. Sixteen-micrometer-thick sections were obtained at -25 °C in a cryostat, mounted on slides 
(Superfrost Plus; Menzel GmbH and Co. KG, Braunschweig, Germany) and stored at -20 °C. Before further 
use, slides were thawed, washed 3 times with PB and incubated with blocking solution (10% (v/v) donkey 
serum and 0.5% (v/v) triton X-100 in PB) for 1 h. Sections were subjected to single or double immunostaining 
with combinations of antibodies at different dilutions in PB with 0.5% Triton X-100 overnight at room 
temperature.

Primary antibodies used in this work have been used extensively in previous studies and have been well 
characterized regarding cell type specificity. Sections were first incubated with one or more of the following 
primary antibodies: Rabbit anti-cone arrestin (1:500; Chemicon-Millipore, Temecula, CA, USA), rabbit 
anti-rhodopsin (1:500; Chemicon-Millipore), mouse anti-bassoon (1:1000; Enzo Life Sciences, Plymouth 
Meeting, PA, USA), rabbit anti-calbindin (1:500; Swant, Bellinzona, Switzerland), mouse anti-C-terminal 
binding protein-2 (CtBP2) (1:1000; BD Biosciences, San Diego, CA, USA) and/or guinea pig anti-vesicular 
glutamate transporter 1 (VGluT1) (1:1000; Chemicon-Millipore), mouse anti-MHC class II RT1B (clone OX-6, 
1:200; AbD Serotec, Kidlington, UK), rabbit anti-Iba1 (1:1000; Wako Chemicals, Richmond, VA, USA), rabbit 
anti-GFAP (1:50; Dako, Santa Clara, CA, USA). Next day retinal sections were subsequently washed in PB and 
incubated with the corresponding mixture of the following secondary antibodies at a 1:100 dilution for 1 
hour at RT: AlexaFluor 488 donkey anti-rabbit IgG, AlexaFluor 555 donkey anti-mouse IgG, and AlexaFluor 
633 donkey anti-guinea pig IgG (Invitrogen, Carlsbad, CA, USA). TO-PRO 3-iodide (Invitrogen) was added 
at 1 μM with the secondary antibodies in order to visualize nuclei. Images were taken using a Leica TCS 
SP2 confocal laser-scanning microscope (Leica Microsystems). Images were processed in parallel with 
Adobe Photoshop 10 software (Adobe Systems Inc., San Jose, CA, USA).  Measurements of the thickness of 
the retinal layers were performed using the NIH ImageJ software developed by Wayne Rasband (National 
Institutes of Health, Bethesda, MD, United States).

Quantification of photoreceptor rows
To study retinal degeneration, we quantified photoreceptor rows, using the nuclear marker TO-PRO 

3, in at least three non-consecutive retinal sections of each animal. Quantifications were performed at 
distances of 0.5, 1.5, 2.5 and 3.5 mm from the optic nerve, toward both the temporal and nasal ora serratas. 
An average value of photoreceptor rows was calculated for each animal.

Flow cytometry
The immune system-related cell populations in the retina were analyzed using flow cytometry. A 

retinal cell suspension was labeled with a cocktail of five antibodies acquired from e-Bioscience (San Diego, 
CA, USA): anti-CD11b-PE (Clone M/170), anti-CD45-FITC (Clone 30-F11), anti-CD11c-PerCpCy5.5 (Clone 
N418), anti-MHC class II (I-A/I-E)-PECy7 (Clone M5/114.15.2), anti-CD169-eFluor 660 (Clone SER-4). After 
discarding debris events, the CD45 positive cell subpopulations were analyzed for their immunoreactivity 
against MHC class II, the dendritic cell marker CD11c and the sialoadhesin (CD169) antibodies. Each mouse 
retina was analyzed individually. Data were acquired on a LSR Fortessa cytometer (BD Biosciences) and 
analyzed using FCS 6 Flow Cytometry Software (De Novo, Los Angeles, CA, USA).

Western blotting
The expression of proteins associated with inflammation, cell viability and cell death was tested by 

Western blotting. Protein extracts were obtained and resolved by denaturing sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE). Briefly, retinas were isolated and proteins were extracted 
using RIPA buffer (Sigma Aldrich, Germany) containing protease (complete EDTA-free; Roche, Mannheim, 
Germany) and phosphatase (PhoStop; Roche) inhibitor cocktails. After incubation on ice for 30 min, debris 
was pelleted by a 10-min centrifugation (10000 x g) at 4 °C and protein concentration in the supernatants 
was quantified with the Bio-Rad protein assay (Bio-Rad, Philadelphia, PA, USA), using bovine serum albumin 
as standard. 20 µg of protein were diluted in Laemmli sample buffer (4% SDS, 100 mM dithiothreitol, 20% 
glycerol, 0.004% bromophenol blue, 125 mM Tris-HCl, pH 6.8) and resolved on 5-12% SDS-PAGE gels. 
Proteins were transferred onto PVDF membranes (Roche) and the blots were blocked with 2.5% (w/v) 
non-fat dry milk in Tris-buffered saline/0.1% Tween-20 (TBS/T, pH 7.6), for 1 h at room temperature. 
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Membranes were incubated at 4 °C overnight, with the appropriate dilution of primary antibody: mouse 
anti-Rhodopsin (Millipore), rabbit anti-Atg12-Atg5 (Abcam, Cambridge, United Kingdom), rabbit anti-p38 
MAPK (Cell Signaling Technology, Danver, MA, USA), rabbit anti-TNF-α (Millipore), rabbit anti-p65 NF-κB 
(Santa Cruz Biotechnology, Dallas, TX, USA), rabbit anti-Bcl-2 (Santa Cruz Biotechnology, Dallas, TX, USA), 
and mouse anti-β-actin (Sigma Aldrich). After three 5-min washes with TBS/T, blots were incubated with 
the corresponding peroxidase-conjugated secondary antibody (dilution 1:1000, Thermo Fisher Scientific, 
Waltham, MA, USA) for 1 h at room temperature. Blots were then washed again three times with TBS/T, 
rinsed briefly with phosphate buffer saline, and developed with the Lumi-light western blotting substrate 
(Roche). Detection of β-actin (β-actin 1:5000) was used as housekeeping protein.

Blood−brain barrier permeation
Prediction of the brain penetration was evaluated using a PAMPA-BBB assay [16], in which a porcine 

brain lipid was used as an artificial membrane (PBL, 141101 Avanti Polar Lipids). The donor plate was a 
96-well filter plate with hydrophobic PVDF membrane (pore size 0.45 μm, sterile, MultiScreen MAIPS4510) 
and the acceptor plate was a 96-well collection plate (MultiScreen MAMCS9610), both from EDM Millipore 
Sigma. 96-well UV plates with a flat bottom were used for UV measurements (655801, Greiner Bio-One). 
Test compounds (10 mM, DMSO stock solution) were diluted with PBS buffer (pH = 7.4) to generate a final 
concentration of 100 µM (1% DMSO). The acceptor plate was filled with 180 μL of 10 mM PBS (1% DMSO). 
The donor plate was first coated with 4 μL of PBL (20 mg/mL in dodecane). Then 180 μL of test compound 
(100 μM) was subsequently added to the donor plate. The donor plate was then carefully placed on top of the 
acceptor plate to make a “sandwich”, which was left undisturbed at 25 °C for 4 h. During this time, compounds 
diffuse from the donor plate to the acceptor plate. After incubation, UV plate reader (SPECtROStar Nano, 
BMG Labtech) determined the concentration of compounds and commercial drugs in the acceptor and the 
donor wells. Every sample was analyzed at three to five wavelengths, in two wells, and in two independent 
runs. Results are given as mean ± standard deviation (SD), and the average of the two runs is reported. Four 
quality control compounds of known BBB permeability were included in each experiment to validate the 
analysis set. Compounds were classified attending to the following classification ranges: CNS + (high BBB 
permeation predicted) when Pe (10-6 cm s-1) > 4.0; CNS - (low BBB permeation predicted) when Pe (10-6 cm 
s-1) </2.0; CNS +/- (BBB permeation uncertain) when Pe (10-6 cm s-1) from 4.0 to 2.0.

Statistical analysis
Normal distribution and homogeneous variance were found for the variables: ERG amplitude 

and number of photoreceptor rows, so that a two-way ANOVA was applied to assess significant effect of 
treatment and measurement conditions. Post hoc pairwise comparisons using Bonferroni’s test were 
carried out when a 0.05 level of significance was obtained. Student’s t-test were conducted to evaluate visual 
acuity and variables from Western blotting, quantification of synaptic ribbons and flow cytometry. Data 
are reported as the mean ± standard error of the mean or standard deviation, as indicated. Values of P < 
0.05 were considered to be statistically significant. All statistical analyses were performed using SPSS 22.0 
software (Statistical Package for Social Sciences, Chicago, IL, USA).

Results

ITH12674 increases visual responses in rd10 mice
In order to evaluate the effect of ITH12674 on the functional activity of rd10 mice retinas, 

scotopic flash-induced ERG responses were recorded in animals treated with ITH12674 (1 or 
10 mg/kg) or with vehicle. ERG recordings from normal C57BL/6J mice served as reference. 
rd10 mice treated with 10 mg/kg ITH12674 showed scotopic single-flash ERG responses 
higher than those obtained in mice treated with 1 mg/kg ITH12674 or vehicle (Fig. 2A). Mean 
values of a- and b-wave amplitudes from ITH12674 10 mg/kg-treated mice were significantly 
greater (respectively, 20% and 28% of increase at the higher stimulus intensities) than those 
measured in control ones (ANOVA, Bonferroni’s test) (Fig. 2C). No differences were observed 
between animals treated with doses of 1 mg/kg and untreated mice (Fig. 2C). Scotopic Double-
flash protocol showed ERG responses slightly increased in ITH12674 10 mg/kg-treated mice 
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Fig. 2. Effect of ITH12674 on retinal responsiveness. (A, B) Dark-adapted intensity responses to single- 
(A) and double-flash (B) ERG stimuli at 0 log cd s/m2 from a normal mouse (C57BL/6J), a non-treated 
dystrophic mouse (rd10) and ITH12674-treated rd10 mice (rd10 + ITH12674) at P30. (C) Luminance-
response curves of rd10 mice non-treated (n=7, circles) and treated with ITH12674 (inverted triangles) 
at a dose of 1 mg/kg (n=4, upper graphs) or 10 mg/Kg (n=15, lower graphs) from P16 to P30. Each graph 
includes measurements from both mixed (grey symbols) and cone-driven (white symbols) responses. Data 
are mean values ± SEM. *P<0.01, **P<0.005, ***P<0.001.
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as compared to non-treated 
mice (Fig. 2B), with a relative 
increment in the average 
amplitude of the a- and 
b-waves (20 and 28% higher, 
respectively), but differences 
were no significant (ANOVA, 
Bonferroni’s test). Visual 
acuity was analyzed in 
the same animals by the 
optomotor test. Mice treated 
with ITH12674 at 10 mg/kg 
showed an increased visual 
acuity (35.6%) with respect 
to the untreated mice, while 
no significant differences 
were found between mice 
treated with ITH12674 at 
1mg/kg and control mice 
(Fig. 3).

ITH12674 preserves photoreceptor morphology in rd10 mice
To evaluate whether ITH12674 was able to preserve the morphology of photoreceptors in 

the degenerating retina, we analyzed retinal sections using antibodies against cone arrestin, 
a cone-specific marker [14] (Fig. 4A-C) and rhodopsin, specific for rods (Fig. 4D-F) in rd10 
mice (Fig. 4B, C, E, F) and C57BL/6J mice (Fig. 4A, D). In non-treated rd10 mice (Fig. 4B), 
cones showed a very small size, with short and swollen outer and inner segments. In these 
animals, axons were reduced and, in some of them, pedicles emerged directly from the cone 
cell bodies. In contrast, cone photoreceptors in animals treated with 10 mg/kg ITH12674 
(Fig. 4C) display better preserved morphology with longer outer and inner segments as well 
as longer axons, and better conserved pedicles, showing the typical cone shape compared 
to untreated animals. No differences in retinal morphology were observed between animals 
treated with 1 mg/kg and control ones. Also, rod morphology was better preserved in 
ITH12674-treated (10mg/kg) rd10 mice (Fig. 4F) compared to non-treated rd10 mice (Fig. 
4E). In ITH12674-treated animals rod outer segments appeared longer compared to those in 
non-treated animals. Indeed, in non-treated animals, rhodopsin immunoreactivity appears 
dislocated around the cytoplasm (Fig. 4F).

ITH12674 decreases photoreceptor loss in rd10 mice
Because the progression of RP varies across the retina, we quantified the number of 

photoreceptor rows (Fig. 5A) in different areas of the retina, from the temporal to the nasal 
zones, using the nuclear dye TO-PRO-3 in vertical sections of P30 retinas. Although no 
statistically significant differences were found between treated and untreated animals in 
any of the areas analyzed, the average number of photoreceptor rows throughout the whole 
analyzed area resulted significantly higher in animals treated with 10mg/kg ITH12674 
compared to untreated animals (ANOVA, Bonferroni’s test, p < 0.05) (Fig. 5B). To assess 
the protective action of ITH12674 on the photoreceptors, we quantified by Western blot 
the expression of rhodopsin in the retinas of treated and untreated rd10 mice (Fig. 5C). 
A statistically significant increased expression of rhodopsin was confirmed in rd10 mice 
treated with 10 mg/kg ITH12674 (increased by 47.2±10,7%) compared to untreated mice 
(Student’s t-test, p < 0.05) (Fig. 5D).

Fig. 3. Effect of ITH12674 on visual acuity. Spatial frequency 
threshold (in cycles per degree) in an optomotor test in C57BL/6J 
(n=6), non-treated (n=7) and treated rd10 mice with ITH12674 at 
a dose of 1 mg/kg (n=4) and 10 mg/Kg (n=15). Data are mean ± 
SEM.*P<0.01.
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Fig. 4. Effect of ITH12674 treatment (10 mg/kg) on photoreceptors of rd10 mice. (A-C) Vertical sections 
of retinas from C57BL/6J (A), non-treated rd10 (B) and ITH12674-treated mice (age P30) labeled for cone 
arrestin (cone cells, green), and TO-PRO 3 (nuclei, blue). Arrowheads point to conserved axons and vertical 
arrows point to conserved cone pedicles. (D-F) Vertical sections of retinas from C57BL/6J (D), non-treated 
rd10 (E) and ITH12674-treated mice (F) (age P30) labeled for rhodopsin (rod cells, red), and TO-PRO 3 
(nuclei, blue). Scale bar: 20 µm.
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ITH12674 maintains photoreceptor connectivity in rd10 mice
In order to study synaptic connectivity between photoreceptors and horizontal cells, 

we immunolabeled retinal sections with antibodies against (i) the vesicular glutamate 
transporter type 1 (VGluT1), (ii) the C-terminal binding protein 2 (CtBP2) and (iii) calbindin. 
The VGluT1 transports glutamate into synaptic vesicles, and was used to visualize cone 
and rod axon terminals [17]. Synaptic ribbons in the photoreceptor axon terminals were 
identified with CtBP2 antibody, which recognizes the domain B of RIBEYE, a structural 
protein of synaptic ribbons [18-20]. Horizontal cell processes were visualized with anti-
calbindin antibody [21, 22] (Fig. 6). Immunolabeling against calbindin in ITH12674 treated 
animals (10 mg/kg) showed horizontal cells with longer and more horizontal dendritic tips 
(Fig. 6B) compared to untreated animals (Fig. 6A). Moreover, ITH12674-treated animals 
displayed a higher number of synaptic ribbons revealed by the density of CtBP2 spots 
showing the typical horse-shoes morphology (Fig. 6D) compared to untreated animals 
(Fig. 6C). The number of synaptic ribbons in outer plexiform layer (OPL) was significantly 
higher in ITH12674-treated animals (378.90±31.58 vs. 276.43±63.84 synaptic ribbons per 

Fig. 5. Effect of ITH12674 treatment (10 mg/kg) on photoreceptors of rd10 mice. (A) Quantification of 
photoreceptor rows along central sections of the retina in both, non-treated and treated retinas (at least 
n=3 in each condition). Error bars represent the SEM. (B) Normalized mean values of photoreceptor rows in 
both, non-treated and treated retinas. (C) Image of representative Western blots showing rhodopsin levels 
in non-treated and ITH12674-treated rd10 mice. Rhodopsin expression in a C57BL/6J mice (WT) is shown 
as reference. Immunoreactive bands at 36 kDa belonging to rhodopsin monomers can be observed. Higher 
bands correspond to rhodopsin dimers and multimers. All bands were quantified in each lane. Western 
blots were performed by triplicates. (D) Bar graph shows the quantification of rhodopsin levels analyzed 
by Western blotting in treated and non-treated rd10 animals, 3 animals in each condition. Expression levels 
in C57BL/6J mice (WT) are shown as reference. Data are normalized to the expression of β-actin. *P<0.01.
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mm in ITH12674-treated and non-treated rd10 mice respectively, Student’s t-test, p < 0.05). 
VGluT1 staining showed a continuous OPL in ITH12674 treated animals (Fig. 6F) indicating 
the presence of still functional photoreceptor axon-terminals. In contrast, in untreated 
animals, only some photoreceptor axon-terminals were stained with VGluT1 (Fig. 6E). The 
merge of the three markers mentioned before revealed a higher density of complete synaptic 
connections, containing all elements, the glutamate transporter, the synaptic ribbon and the 
horizontal dendritic tip between photoreceptor and horizontal cells, in ITH12674 treated 
animals (Fig. 6H, arrowheads). In contrast, in untreated animals it was difficult to find the 
three markers in the same synaptic contact (Fig. 6G, arrowheads).

Fig. 6. Effect of ITH12674 on photoreceptor connectivity. (A-H) Representative vertical central retinal 
sections of rd10 mice (A,C,E,G) and ITH12674-treated (10 mg/Kg) rd10 mice (B,D,F,H) (age P30) labeled 
for calbindin (green; A,B), CtBP2 (red; C,D), VGluT1 (blue; E,F) and merged images (G,H). In ITH12674-
treated animals, immunolabeling showed horizontal cells with longer and more horizontal dendritic tips 
(Calbindin), a higher number of ribbon synapsis (higher density of CtBP2 spots showing the typical horse-
shoes morphology) and a continuous OPL layer with still functional photoreceptor axon-terminals (VGluT1 
staining). The merged image shows higher density of complete synaptic connections (H, arrowheads).



Cell Physiol Biochem 2020;54:142-159
DOI: 10.33594/000000210
Published online: 7 February 2020 152

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2020 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

Campello et al.: Novel Nrf2 Inducer ITH12674 Slows Retinal Degeneration

ITH12674 reduces the oxidative stress and inflammatory state of the degenerative rd10 
mice retina
In order to evaluate if ITH12674 was able to reduce the microgliosis and the inflammatory 

state of rd10 mouse retinas, as a first approximation we searched for morphological changes 
in microglia and Müller cells by immunolabeling retinal sections with antibodies against 
microglia (Iba1, MHC class II) and activated Müller cells (GFAP), altogether with the nuclear 
staining marker TO-PRO 3. Morphologically, no differences were observed in microglial cells 
between ITH12674-treated (10 mg/Kg) (Fig. 7B) and non-treated rd10 mice (Fig. 7A) or in 
Müller cells in treated (Fig. 7D) and control mice (Fig. 7C).

As changes in the inflammation markers are not necessarily always accompanied by 
changes in cellular morphology, at least in this state of the degenerative process, we further 
analyzed the oxidative stress and activated inflammatory signaling pathways in treated and 
non-treated animals, the expression of anti apoptotic (Bcl-2), autophagic (Atg12-Atg5, p38 
MAPK) and inflammatory (TNF-α, NF-κB) specific biomarkers was analyzed by Western 
blotting (Fig. 7E, F). Analysis showed that ITH12674 at a dose of 10 mg/kg reduced the protein 
levels of TNF-α by 50% and NF-κB by 60% compared to their untreated counterparts. On 
the other hand, the pro-survival biomarkers Atg12-Atg5 and p38 MAPK were up-regulated 
after ITH12674 treatment; p38 MAPK protein levels increased by 40% and the increase of 
Atg12-Atg5 was around 300%. Differences between Bcl-2 expression values did not reach 
significance between the two groups.

We also analyzed immune-related cell populations in the degenerating retinas by flow 
cytometry, evaluating the immunoreactivity against CD11b, CD45, CD11c, MHC class II and 
CD169 antibodies (Fig. 8). Both, ITH12674-treated and non-treated rd10 mice showed similar 
mean intensity fluorescence values for CD11b (11015±373 and 10502±373 respectively). 
In ITH12674-treated rd10 mice (10 mg/kg), the cell population simultaneously positive 
for CD45 and CD11c was lower than that observed in non-treated mice (Fig. 8A-D): CD45+ 
population with intermediate CD11c fluorescence values was 34% reduced in ITH12674-
treated rd10 mice (Student’s t-test, p < 0.0001), and the population with the phenotype 
CD45+ CD11chigh MHC class IIhigh was 74% lower in ITH12674-treated rd10 mice (Student’s 
t-test, p < 0.0001). Conversely, the CD45+ CD11c- MHC class II- population was 84% higher 
in non-treated rd10 mice (Student’s t-test, p < 0.0001). Moreover, ITH12674-treated rd10 
mice showed a decrease in CD45+ CD169+ population compared with non-treated animals 
(5.36±1.69 vs 11.75±3.09 respectively) (Student’s t-test, p < 0.0001) (Fig. 8E, F).

Altogether, these results point to an effect of ITH12674 reducing the oxidative stress 
and the inflammatory state of the degenerating retina.

ITH12674 is highly permeable in a prediction assay of the brain penetration
We performed a prediction of the brain penetration using a PAMPA-BBB assay (Table 

1). Permeability value for ITH12674 was 21.8 ±1.2 x10-6 cm s-1, as other highly permeable 
commercial drugs.
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Fig. 7. Effect of ITH12674 on the oxidative stress and inflammatory state of the retina. (A-D) Representative 
vertical retinal sections of non-treated (A, C) and ITH12674-treated rd10 mice (10 mg/Kg) (B, D) (age P30) 
labeled for Iba1 (microglial cells, green), MHC class II (activated microglial cells, red) and GFAP (Müller cells, 
red). Nuclei were stained with TO-PRO 3 (blue). ONL: outer nuclear layer; OPL: outer plexiform layer; INL: 
inner nuclear layer; IPL: inner plexiform layer; GCL: ganglion cell layer.  Scale bar 20μm.  (E) Representative 
images of Western blots showing the relative expression levels of Atg12-Atg5, p38 MAPK, TNF-α, NF-κB, 
Bcl-2 and β-actin in non-treated rd10 and ITH12674-treated animals. Western blots were performed by 
triplicates. (F) Bar graph shows the quantification of the expression levels obtained from 3 independent 
experiments. *P<0.01.
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Fig. 8. Effect of ITH12674 on the immune cell populations in the retinas of rd10 mice. Whole retinal 
cells from non-treated and ITH12674-treated (10 mg/Kg) rd10 mice were labeled with a cocktail of five 
antibodies: PE-conjugated anti-CD11b, FITC-conjugated anti-CD45, PerCpCy5.5-conjugated anti-CD11c, 
PECy7-conjugated anti-MHC class II (I-A/I-E), and eFluor 660-conjugated anti-CD169, and analyzed by flow 
cytometry. (A) Dot plot representing SSC against FSC of a whole mouse retina. (B) The CD45-positive cells 
were gated. (C) Double plots presenting CD11c and MHC class II immunofluorescence of CD45+ cells. Image 
shows data from a single representative experiment in each condition. (D) Bar graph showing different 
phenotype populations (% of CD45 positive cells) labeled with anti-CD11c and MHC class II antibodies from 
non-treated and ITH12674-treated mice. (E) Contour plots representing SSC against CD169 expression of 
CD45+ gated cells. Image shows data from a single representative experiment in each case. (F) The graph 
shows mean values of CD169 positive population (% of CD45 positive population) in each condition. Each dot 
plot is representative of a minimum of four independent replicates.  Data are mean values ± SEM. **P<0.001.
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Discussion

Administration of novel Nrf2 inducer compound ITH12674 to rd10 mice for 2 weeks, 
mildly but significantly improved functional parameters such as ERG responses and 
visual acuity. This correlated with a better-preserved photoreceptors morphology as well 
as synaptic connectivity. Higher VGluT1 expression, a glutamate transporter involved in 
information transfer from photoreceptors to postsynaptic cells [23], supports such improved 
connectivity. These findings agree with those of previous studies showing that other Nrf2 
inducers endowed with antioxidant and anti-inflammatory properties such as melatonin 
and sulforaphane, exhibited retinal neuroprotective effects in various rat and mouse models 
of retinal degeneration [11, 24-26]. As ITH12674 also displays neuroprotective properties 
in vitro, by inducing Nrf2 and antioxidant and anti-inflammatory pathways [12], ITH12674 
could also exert its retinal neuroprotective properties through these and other signaling 
pathways.

ITH12674 augmented the expression of antiapoptotic Bcl-2 as well as Atg12-Atg5, 
a biomarker protein for autophagy. This protein has a main role in retinal degenerative 
diseases [27]; this is illustrated by an experiment in which the reduction of Atg12-Atg5 
complex is associated to the development of AMD-like retinopathy [28]. As Nrf2 regulates 
different autophagy proteins [29], it seems plausible that the retina neuroprotective effects 
of ITH12674 are mediated by autophagy stimulation.

Another contributor in the retinal neuroprotective actions of ITH12674 is linked to its 
ability to enhance the p-p38 MAPK levels, the activated phosphorylated form of p38 MAPK, 
that is also increased by sulforaphane [30]. Consistent with this is the observation that 
the light-induced photoreceptor damage is accelerated by p38 MAPK inhibition, while its 
enhanced activity is protective [31]. In this line is an experiment showing that the carotenoid 
derivative crocetin increases p38 levels at the time it prevents retinal ischemic damage in 
mice [32].

MAP kinases function both upstream and downstream of TNF-α expression, a crucial 
pathway in inflammatory processes [33]. In this context, the augmentation of p38 MAPK 
by ITH12674 keeps pace with our observation that the compound elicited downregulation 
of TNF-α and NF-κB expression, consistent with its anti-apoptotic and anti-inflammatory 
effects. In line with this property is the protective role of melatonin in diabetic retinopathy, 
through the attenuation of inflammation by NF-κB [34]. Also, it is accepted that microglial 
activation and the expression of chemokines and TNF-α play relevant roles in retinal 
degeneration [1]. Additionally, NF-κB is activated in retinal degeneration of rd mice with 
concomitant microglial activation [35]. Furthermore, increased TNF-α expression is directly 
linked to increased retinal degeneration in the P23H rat model [36].

Treatment with ITH12674 also evidenced a change in the phenotype of immune-
related cells. This is interesting as in retinal degeneration there is an activation of resident 
microglia, with concomitant recruitment of immune cells, and proliferation of monocytes 
that contribute to the tissue inflammatory state [1]. In the analysis of several cell biomarkers 
we found that ITH12674 produced a significant reduction in the CD11c and MHC class II 
positive cells. Integrin CD11c is highly expressed in injured and degenerating retinas [37-40]. 

Table 1. Permeability (Pe 10-6 cm s-1) in the PAMPA-BBB Assay for commercial drugs (used in the experiment 
validation) and ITH12674, with their predictive penetration in the CNS. a[16]. bData are the mean ± SD of 2 
independent experiments
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Also, MHC class II expression is upregulated in retinal injury and degeneration; its induction 
significantly correlates with disease severity [41-43]. ITH12674 also decreased the CD169 
positive cell populations, related to infiltrating monocytes, macrophages, and dendritic cells 
but not microglia [44-48].

Some limitations of our study are related to the mild effects of ITH12674 on ERG and 
visual acuity in rd10 mice. This could be due to a short half-life of the compound; in spite 
of the fact it was administered twice a day for 2 weeks, a potential short half-life could limit 
a sustained residence time of the compound in retinal cells. Another limitation is the time 
window for the compound administration. This is due to the fact that, in neurodegenerative 
diseases the glia activation could be in M1 phase or proinflammatory or M2 phase or anti-
inflammatory [49].

However, there are also some positive aspects of our study. The most salient is the in 
vivo demonstration of the proof-of-concept that the in vitro neuroprotective, antioxidant, 
and anti-inflammatory properties of ITH12674 [12] are also reproduced in vivo, in a model 
of retinal degeneration, the RP rd10 mouse. This is stimulating in the context of our present 
work aimed at chemically optimizing the pharmacodynamics, pharmacokinetic, and safety 
profile of compound ITH12674.

Conclusion

In conclusion, novel Nrf2 inducer compound ITH12674 was previously found to 
exhibit neuroprotective effects on in vitro models of neurotoxicity. In the present study, 
we established the in vivo proof-of-concept of its retinal neuroprotection capabilities 
functionally, morphologically, and neurochemically, upon its chronic administration to rd10 
mice, a model of RP. Such neuroprotection properties are linked to its ability to reduce the 
expression of various inflammatory markers, by attenuating microglia activation.
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