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Abstract
Neutrophils were traditionally considered as short-lived cells with abundant secretory and 
protein synthetic activity. Recent studies, however, indicate neutrophils are in reality a het-
erogeneous population of cells. Neutrophils differentiate from pluripotent stem cells in the 
bone marrow, and can further mature in the blood stream and can have different phenotypes 
in health and disease conditions. Neutrophils undergo primary functions such as phagocy-
tosis, production of reactive oxygen species (ROS), release of lipid mediators and inflam-
matory proteins (mainly cytokines), and apoptosis. Neutrophils stimulate other neutrophils 
and trigger a cascade of immune and inflammatory responses. The underpinning intracellular 
metabolisms that support these neutrophil functions are herein reported. It has been known 
for many decades that neutrophils utilize glucose as a primary fuel and produce lactate as an 
end product of glycolysis. Neutrophils metabolize glucose through glycolysis and the pen-
tose-phosphate pathway (PPP). Mitochondrial glucose oxidation is very low. The PPP provides 
the reduced nicotinamide adenine dinucleotide phosphate (NADPH) for the NADPH-oxidase 
(NOX) complex activity to produce superoxide from oxygen. These cells also utilize glutamine 
and fatty acids to produce the required adenosine triphosphate (ATP) and precursors for the 
synthesis of molecules that trigger functional outcomes. Neutrophils obtained from rat intra-
peritoneal cavity and incubate for 1 hour at 37°C metabolize glutamine at higher rate than 
that of glucose. Glutamine delays neutrophil apoptosis and maintains optimal NOX activity 
for superoxide production. Under limited glucose provision, neutrophils move to fatty acid 
oxidation (FAO) to obtain the required energy for the cell function. FAO is mainly associated 
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with neutrophil differentiation and maturation. Hypoxia, hormonal dysfunction, and physical 
exercise markedly change neutrophil metabolism. It is now become clear that neutrophil me-
tabolism underlies the heterogeneity of neutrophil phenotypes and should be intense focus 
of investigation.

Neutrophil identity and biology

The most abundant leukocyte in human peripheral blood is neutrophil with an esti-
mated daily turnover of 1010 to 1011 cells [1, 2]. Bone marrow myeloid cells differentiate to 
myeloblasts through granulocytopoiesis to generate neutrophils [3]. The estimated neutro-
phil half-life in human blood is of only 19 h [4, 5]. The life span of neutrophils, however, can 
be extended up to 72 hours when activated [6, 7]. Due to the short lifespan, blood neutro-
phils have to be constantly replenished from bone marrow precursor cells. Evrard, et al. [8] 
described three bone marrow neutrophil subsets. The committed proliferative neutrophil 
precursor (preNeu) differentiates and generates two other subsets: non-proliferating imma-
ture neutrophils and mature neutrophils either in mice [9] and humans [10]. Mice pre-neu-
trophils express cluster of differentiation (CD) 117 but no markers for other leukocyte lin-
eages. The expression profiles of chemokine C-X-C motif ligand receptor 4 (CXCR4), CXCR2, 
and CD101 discriminate immature neutrophils (CXCR2−CD101−) and mature neutrophils 
(CXCR2+CD101+). In the human bone marrow, the discriminations of the three primary neu-
trophil subsets associate to the absence of other leukocyte lineage markers but expression of 
CD101 and other cell specific surface proteins for neutrophils such as CD16 [11].

The number of granules in the cytoplasm in the promyelocyte phase during neutro-
phil maturation increases. For instance, azurophils granules produced in the Golgi complex. 
Neutrophils then develop to reach the myelocyte stage, characterized by the production of 
specific granules [12]. The granules contained in the cytoplasm of neutrophils are primary 
lysosomes. These latter granules fuse with the phagocytic vacuoles. The released hydrolytic 
enzymes then act as antibacterial agents [13]. There are three main types of granules in 
neutrophils. Azurophilic or primary are large and dense granules formed during promyelo-
cyte stage and contain myeloperoxidase [14]. Specific or secondary granules formed during 
the myelocyte-metamyelocyte phase contain lactoferrin [15]. The tertiary granules formed 
at the band-stage of cell development contain gelatinase [16]. These cells are also known 
as polymorphonuclear (PMN) leukocytes since the segmented nucleus is made up of 3 to 5 
lobes connected through a thin strip of nuclear material. Immature neutrophils found occa-
sionally in the circulation are called “rods” because they do not have nuclei segmented into 
lobes, being identified by their horseshoe-shaped nuclei [17].

Neutrophil functions

Neutrophils are the first leukocytes to reach the inflammation or infection site to com-
bat the invading microorganisms [18]. The activation of neutrophils involves: endothelial 
cell adhesion, migration to inflamed tissue (chemotaxis), phagocytosis, degranulation, ROS 
generation, and cytokine production. The cytokines produced participates of the inflamma-
tion process, as they attract other leukocytes to the inflammation area [19]. When activated, 
neutrophils migrate following the gradient of cytokines or other compounds, adhere to the 
endothelium of the vessels, and pass then to the tissues. Neutrophils move towards the in-
flammatory focus, through chemotaxis, where they perform phagocytosis of particulate ma-
terial and produce ROS [20]. These cells also release various cytokines, such as IL-6, IL-1, 
and tumor necrosis factor alfa (TNF-α), fever-causing pyrogens and inflammation chemical 
mediators [21]. Neutrophils act in efferent (phagocytosis and degranulation) and afferent 
(release of immunomodulatory molecules) processes associated with inflammatory and im-
mune responses [22]. Following migration to damaged/infected tissue, neutrophils rapidly 
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die after completing specific tasks [23], releasing toxic granular proteins and DNA genomic 
strands to catch and kill bacteria [24].

Neutrophils also participate in sterile (in the absence of microorganism) inflammation 
as occurs in trauma, ischemia-reperfusion injury, chemically-induced injury. Ng et al. [25] 
investigated mice dermis neutrophil migration to injured tissue using microscopic analy-
sis. The authors reported three subsequent phases: scouting neutrophil migration, waves of 
neutrophils, and neutrophil migration stabilization. Neutrophils are also involved in patho-
logical processes (e.g. gout and pseudogout, myocardial infarction, stroke, and infiltration 
of leukocytes into the tumor surrounding [26]. Release of molecules associated with endog-
enous damaged tissues known as DAMPs (damage-associated molecular pattern) then takes 
place [26, 27]. DAMPs lead to production of CXC chemokines required for the neutrophils 
recruitment in sterile inflammation [26, 28]. In 2004, Brinkmann et al. [24] described the 
neutrophil extracellular traps (NETs). Neutrophil NETs contain DNA, histones, and peptides 
with anti-microbial properties to trap and kill microorganisms. Formation of NETs occurs by 
microbes, bacterial products, and phorbol 12-myristate 13-acetate (PMA) stimuli. Azevedo, 
et al. [29] described that glucose metabolism has deviated from glycolysis to the PPP during 
NETs formation.

Biological cell death types include necrosis, apical necrosis, pyroptosis, necroptosis, and 
Neutrophils Extracellular Traps-induced cell death (NETosis) [24, 30]. Following completion 
of their biological function, neutrophils die by necrosis or apoptosis [31]. The constitutive 
death process of neutrophils is apoptosis. Galluzzi, et al. [32] reported an updated cell death 
classification based on the mechanisms and the central aspects associated. The authors list-
ed and defined different types of regulated cell death processes and the programmed cell 
death. The authors pointed out that cellular senescence is not a cell death type but instead is 
a non-lethal process. Biochemical and cellular characteristics allow the recognition of neu-
trophils by resident macrophages in the tissues, they perform phagocytosis of neutrophils 
and their removal before the rupture of the cell membrane occurs. This process is vital to 
maintain tissue homeostasis [6, 7, 33, 34].

There are differences reported on neutrophils from mice and humans. Neutrophils rep-
resent the majority of white blood cells in humans (50 to 70%), but are less common in mice 
(10 to 30%), whereas mice blood has a preponderance of lymphocytes (75–90%) [35]. In 
mice, granulocyte antigen-1 (Gr-1) and lymphocyte antigen 6 complex locus G6D (Ly-6G) 
are well-defined markers for identifying granulocytes, whereas human granulocytes do not 
express these proteins. Mice also do not express the human Fc receptor for Immunoglobulin 
A - IgA – (FcαRI or CD89) - one of the antibody fragment crystallizable region (Fc) recep-
tors that trigger effector functions, such as cytokine production, NETose, and phagocytosis 
[36, 37]. The granule content neutrophils from humans are very different from that in mice, 
which can alter the effector functions of neutrophils in mice as compared to humans. Mice 
neutrophils do not produce defensins, whereas human neutrophils produce this proteins 
[38]. The binding immunoglobulin (BIP), myeloperoxidase, β-glucuronidase, lysozyme, alka-
line phosphatase, and arginase-1 expressions are much higher in humans than in mice neu-
trophils [39]. The production of pro and anti-inflammatory cytokines also differs between 
humans and mice.

Neutrophil plasticity

Neutrophil was considered for long time a homogenous cell type with low transcription 
activity and short-life time. There is now unquestionable evidence on the heterogeneity of 
neutrophil phenotype and function in different tissues [40]. A great variety of neutrophil 
phenotypes was identified in health and diseased conditions [41]. Neutrophil phenotypes 
are differentiated based mainly on cell-surface markers, maturity state, and functions. Neu-
trophils are not only microbe-killing in diseases but have a role in innate immunity. The 
reviews of Yang, et al. [40] and Silvestre-Roig, et al. [41] describe the neutrophil phenotypes 
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and functions in several diseased conditions such as inflammation, rheumatoid arthritis, 
systemic lupus erythematosus, autoimmune disease, cancer, and diabetes. Mortaz, et al. [42] 
reviewed the studies on neutrophil phenotypes in trauma. The authors present evidence 
that neutrophil phenotypes associated with secondary complications may be used as prog-
nosis of trauma injured patients.

Neutrophil displays different phenotypes according to the inflammatory condition [43, 
44]. Description of N1 and N2 phenotypes illustrate the plasticity of neutrophils. N1 neutro-
phils associate with acute inflammation to eliminate pathogens. N1 neutrophils have a hy-
persegmented and lobulated nuclear morphology and anti-tumor properties, and increased 
activity of NADPH oxidase leading to high production of ROS, and have anti-tumor prop-
erties [45, 46]. N1 highly expresses pro-inflammatory mediators – TNF-α, chemokine C-C 
motif ligand 3 (CCL3), and intercellular adhesion molecule-1 (ICAM-1) [47]. N2 neutrophils 
induce angiogenesis and tissue remodeling in chronic inflammation. N2 phenotypes have 
pro-tumor actions [48], causes tumor growth, and tumor cell metastasis. In chronic inflam-
mation, N2 phenotype formation occurs in the bone marrow and tumor microenvironment 
[49, 50]. Priming with interferon- γ (IFN-γ) and TNF-α convert N2 to N1 [51]. The transfor-
mation of growth factor β (TGF-β), an immunosuppressive cytokine overexpressed by tumor, 
polarizes neutrophils into N2, whereas TGF-β blockade leads to an accumulation of N1 [43]. 
The plasticity of neutrophils under different stimuli and the differentiating neutrophil mark-
ers repertoire indicate that other phenotypes might exist between the extremes N1 and N2 
neutrophils.

Neutrophils have antitumor or pro-tumor properties depending on the inflammatory 
cytokine effects [52]. Zhu, et al. [10] described neutrophil progenitor cells with pro-tumoral 
properties within mouse and human bone marrow. So, these cells are programmed to exhibit 
pro-tumoral activities even before reaching the blood stream. Neutrophils also have either 
pro- or anti-metastatic properties. Hsu, et al. [53] reported the involvement of immature 
low-density neutrophils in the induction of liver metastasis in cancer conditions. Contrary, 
mature high-density neutrophils impede liver metastases from occurring.

The different features of low- and high-density neutrophils correlate with metabolic ac-
tivity. Low-density neutrophils exhibit an augmented capacity for ATP production even in 
mitochondria. This augmented energetic generating feature enables this neutrophil pheno-
type to carry out pro-metastatic functions, including NETosis, even under nutrient-deprived 
conditions. NETosis plays a role in the neutrophil promotion of breast cancer liver metasta-
sis. The authors described that proline and glutamate metabolism generates ATP for low-
density neutrophils to carry out NETosis even in the absence of glucose. The function of the 
pro-metastatic neutrophils then associates with the plasticity of this cell type to move the 
substrate flux from one metabolic pathway to another.

Neutrophil metabolism

The main steps catabolic pathways of glucose, glutamine and fatty acid metabolism are 
presented in the Fig. 1. Neutrophils eliminate and destroy microorganisms or cell debris 
through phagocytosis, production of ROS, extrusion of genomic DNA, such as NETs, and re-
lease of cytotoxic granules [18, 54]. Neutrophils in general use energy derived primarily from 
glucose [55-57]. In 1912, Levene and Meyer [58] reported that neutrophils use glucose and 
convert it to lactic acid. Sbarra and Karnovsky [59] described the neutrophil main ATP gen-
eration pathway is glycolysis initiated by glucose phosphorylation to glucose-6-phosphate 
(G6P) through hexokinase.

Glucose forms lactic acid through anaerobic glycolysis in neutrophils [60]. Neutrophils 
have few functional mitochondrial and so very low Krebs cycle activity and rates of oxida-
tive phosphorylation [61]; around 3% of total ATP used by these cells [62] and oxidative 
phosphorylation. Mitochondria participate of apoptosis through mitochondrial membrane 
potential changes and release of specific signaling factors [34]. We reported that rat neu-
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trophils have substantial phosphate-dependent glutaminase (PDG) activity, a key enzyme 
for glutamine metabolism by the cells, converting glutamine to glutamate. Neutrophils were 
obtained from adult rats by intraperitoneal cavity lavage using 40 mL sterile phosphate-
buffered saline, 4 h after induction of neutrophil migration by intraperitoneal injection of 
20 mL sterile oyster glycogen solution (at 1%). These cells (107 per flask) were incubated in 
1 mL Krebs-Ringer medium containing 2% defatted albumin, 5 mM glucose or 2 mM gluta-
mine, for 1 hour, at 37°C. Rat neutrophils utilize glutamine at higher rates than glucose in the 
experimental conditions described [63-65].

Glycolysis
Cells require glucose for survival, proliferation, and function. Rui Curi, Tania Pithon-Curi 

and others measured the maximal enzyme activities of glucose and glutamine metabolism 
in rat neutrophils obtained from intraperitoneal cavity. As pathway markers, they deter-
mined the activities of hexokinase (glycolytic pathway), glutaminase (glutaminolysis), and 
citrate synthase (Krebs cycle) [63-66]. The rates of metabolite utilization and production 
in incubated rat neutrophils were also determined [63, 66]. Glycolysis generated the major-
ity of ATP required for neutrophil function [67] so generating lactate [68]. The glycolysis 
rate remains unchanged during phagocytosis [56], whereas ATP levels, which usually are 
approximately 1.9 nmol/106 cells, fall to 0.8 nmol/106 cells [55], suggesting high rates of 
ATP consumption during phagocytosis. The neutrophil is particularly rich in glycogen. The 
concentration of this complex polysaccharide is 7.36 mg/109 cells [69, 70].

Neutrophils use glucose from intracellular glycogen breakdown [55] and from the circu-
lation through the glucose transporters (GLUTs) uptake system [57]. Expressions of GLUT1, 
GLUT3, and GLUT4 vary according to neutrophil biological conditions [71]. In resting con-
ditions, neutrophils express GLUT1 and GLUT3 on cells surface that do not require insulin 

Fig. 1. Neutrophil metabolism and outcomes.
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to promote glucose uptake. However, in the presence of PMA stimulation, insulin induced 
GLUT4 transfer to plasma membrane. Under physiological circumstances, glucose is mainly 
transported through GLUT1 in neutrophils [72].

Intracellular G6P is the precursor of glycogen [69]. Glucose-6-phosphate transporter 
(G6PT) mediated endoplasmic reticulum (ER) uptake [73] or metabolization through gly-
colysis [56] or the PPP are other G6P destinations [74]. Glycogen breakdown in neutrophils 
is considered primarily restricted to phagocytic activity [56, 75]. The primary competing 
glucose/G6P pathways in neutrophils are glycolysis and PPP. Glycolysis supplies the neces-
sary ATP for neutrophil locomotion and chemotaxis whereas PPP generates NADPH.

Pentose-phosphate pathway (PPP)
Glucose utilization through the PPP is required for several neutrophil functions [59, 76, 

77]. In resting neutrophils, the amount of glucose metabolized via this route is only 2 to 3 
percent of the total glucose consumed by the cells [77, 78]. The PPP is of particular impor-
tance for neutrophils because it provides the NADPH needed for de novo fatty acid synthesis 
and for NOX activity. NOX uses NADPH to reduce oxygen and generate superoxide (O2) [73, 
79-81].

Superoxide generated by this enzyme complex serves as the starting point for the gen-
eration of a wide variety of reactive oxidants such as oxidized halogens, free radicals, and 
singlet oxygen. Neutrophils use these oxidant compounds to kill invading microorganisms 
[82]. Glucose-6-phosphate dehydrogenase (G6PD) and gluconate-phosphate dehydrogenase 
enzymes are steps of NADPH generation in the PPP [83]. As mentioned, NADPH donates 
electrons for the production of superoxide and hydrogen peroxide that induce the release 
of toxic granular proteins. Elastase, myeloperoxidase, and chromatin traps (DNA genomic 
strands) kill a large quantity of bacteria at the same time [84].

Glycogen metabolism
Glycogen content increases with neutrophil maturation [85]. Glycogen breakdown in-

creases when neutrophils are exposed to limited extracellular glucose. Glycogen synthesis 
occurs when glucose supply is adequate [56, 69, 86]. The re-establishment of normal in-
tracellular glucose levels promotes the re-synthesis of glycogen [59]. Glucose-starved neu-
trophils exhibit increased glycogen phosphorylase activity during phagocytosis to form 
glucose-6-phosphate [86]. Phagocytosis promotes glycogen breakdown to generate ATP via 
glycolysis [55-57].

The neutrophil glycogen level is also regulated by glucose recycling between ER and 
cytoplasm. Jun, et al. [73] reported the ER and cytoplasm glucose cycling plays a key role to 
regulate neutrophil function and apoptosis. Deficiency of the ER glucose-6-phosphatase-β 
(G6Pase-β also known as G6PC3) underlies the G6PC3–deficient congenital neutropenia 
syndrome. It is reported enhanced ER stress and apoptosis in neutrophils from patients 
with this disease. G6PC3 generates glucose and phosphate from the G6P that enters the ER 
through the G6P transporter (G6PT). The decreased cytoplasmic concentrations of glucose, 
G6P, lactate, and ATP due to the deficiency of ER G6PC3 impairs neutrophil function and 
causes apoptosis leading to neutropenia.

Fatty acids
Fatty acids have different chain lengths varying from 3 to 30 carbon atoms. Short-chain 

fatty acids have less than six carbon atoms, whereas medium-chain fatty acids have six to ten 
carbon atoms, and long-chain fatty acids have over twelve carbon atoms. Monounsaturated 
fatty acids have one carbon - carbon bond whereas the polyunsaturated contain two or more 
double bonds. Saturated fatty acids have no double bonds in the molecule [87].

Neutrophil activation and function also rely on fatty acid utilization and oxidation. 
Several free fatty acid receptors exist in this leukocyte. Free fatty acid receptor-1 (FFAR1/
GPR40) and 2 (FFAR2/GPR43), and GPR84 transport long-chain fatty acids (>C12), short-
chain fatty acids (C2-C6), and medium-chain fatty acids (C7-C12), and fatty acid transporter 
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proteins (FATP) also transport long-chain fatty acids [88, 89]. Fatty acids play an essential 
role in leukocyte metabolism [90]. Neutrophils release arachidonic acid derivatives such as 
leukotriene B4 (LTB4) and hydroxyeicosatetraenoic acids (HETE) [91, 92]. In conditions of 
limited glucose availability or under fasting conditions, cells rely on fatty acid metabolism.

Autophagy is involved in cell proliferation, death, and differentiation. Autophagy plays 
a critical role in cell fate decisions [93]. Riffelmacher, et al. [94] reported that autophagy-
dependent release of free fatty acids participates in the bone marrow neutrophil maturation.

Free fatty acids enter the FAO pathway to produce ATP through oxidative phosphoryla-
tion (OXPHOS) for neutrophil differentiation, maturation, and function [95]. FA can block 
glycolysis through the glucose-fatty acid cycle. Randle, et al. [96] described that fatty acids 
reduce the uptake and glucose metabolism in cardiac muscle cells. The oxidation of fatty 
acids generates acetyl-coenzyme A (acetyl-CoA) that in turn forms citrate via the citrate 
synthase activity. High acetyl-CoA/CoA and NADH/NAD ratios promote pyruvate dehydro-
genase kinase (PDK) activation that inactivates pyruvate dehydrogenase (PDH). ATP and ci-
trate cause inhibition of phosphofructokinase (PFK), and so glucose-6-phosphate accumula-
tion and hexokinase inhibition. As a consequence, glycolysis is inhibited.

Fatty acyl-CoAs are transported to the mitochondrial matrix where acetyl-CoA is pro-
duced which can enter the tricarboxylic acid (TCA) cycle for oxidation [64]. Carnitine is nec-
essary for energy production due to its role in FAO. Carnitine palmitoyltransferase-1 (CPT-1) 
catalyses an ester bond of carnitine with long-chain fatty acids and generates acylcarnitines. 
This enzyme is on the outer mitochondrial membrane. Acylcarnitines are then translocated 
across the inner mitochondrial membrane by carnitine acylcarnitine translocase [97]. Ac-
ylcarnitines regenerate acyl-CoAs inside the mitochondrion through the carnitine palmito-
yltransferase-2 (CPT-2) activity that is placed in the inner mitochondrial membrane [98]. 
Carnitine returns to the cytoplasm for another cycle (using carnitine-acylcarnitine translo-
case - CACT), while acyl-CoAs enter the pathway of β-oxidation generating acetyl-CoA (un-
der aerobic conditions and low ATP levels) [97].

Glutamine metabolism
Glutamine concentration is relatively high in the human blood and intracellular pools 

as compared to all other amino acids. Mammals synthesize glutamine in skeletal muscle, 
liver, and lung [99]. In high catabolic states (e.g. injury, trauma, burns, and sepsis), the cel-
lular requirement for glutamine is increased. Glutamine then becomes an essential metab-
olite; it has been referred to as a “conditionally” essential amino acid. In the 1980s, Eric 
Newsholme’s laboratory performed pioneering studies regarding glutamine metabolism in 
leukocytes. His group was the first to establish that lymphocytes and macrophages utilize 
glutamine at high rates. Up to then, glucose metabolism was the solely well studied in these 
cells. Glutamine is of critical importance for proliferation of lymphocytes and the inflam-
matory response of macrophages. We reported that glutamine is utilized by rat neutrophils 
and it participates in several neutrophil functions [63, 100]. Castell, et al. [101] described 
on the glutamine metabolism in human neutrophils. Glutamine is involved in production 
of ROS and apoptosis of neutrophils. Due to the high utilization of glutamine by leukocytes 
and its importance for these cells functions, Eric Newsholme and members of his laboratory 
postulated skeletal muscle provides this amino acid for leukocyte functions. Indeed, marked 
skeletal muscle mass wasting occurs in conditions of increased leukocyte function and glu-
tamine requirement [102].

Krebs [103] first described the reactions of glutamine synthesis and hydrolysis in mam-
malian tissues. The most significant proportion of circulating glutamine (concentration of 
approximately 0.6 mmol/L in humans) derives from skeletal muscle, which synthesizes and 
exports glutamine and alanine to the circulation. The skeletal muscle glutamine synthesis 
substantially increases during situations of intense catabolism, such as fasting and pro-
longed exercise. In patients with acquired immune deficiency syndrome (AIDS), sepsis, se-
vere injury, burns, or after surgery, plasma glutamine concentration decreases to levels less 
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than 50% of the standard values. Low plasma glutamine level is associated with impaired 
immune defense functions [104, 105].

Glutamine is the free amino acid with the highest concentration in the skeletal muscles, 
reaching a concentration of 20 mmol/L [106]. In addition to skeletal muscle, glutamine syn-
thesis also occurs in the liver, adipose tissue, and lung. In contrast, hydrolysis occurs in a 
variety of tissues and organs, including kidneys, lymph nodes, macrophages, gastrointestinal 
tract, liver, brain, and adipose tissue [107, 108].

The first step of glutaminolysis is the conversion of glutamine to glutamate through PDG. 
Glutamate is converted into α-ketoglutarate via transamination or under some conditions, via 
glutamate dehydrogenase (releasing NH4

+), that enters the TCA cycle. α-Ketoglutarate forms 
succinyl-coenzyme A, succinate, fumarate, and then malate. Malic enzyme converts malate 
and nicotinamide adenine dinucleotide phosphate (NADP+) into pyruvate and NADPH. Pyru-
vate can be converted into lactate or to a lesser extent enters the TCA cycle via generation of 
acetyl-CoA by PDH. Intermediates and products of glutaminolysis undergo several chemical 
reactions and have different functions in various cell types [102].

Glutamine is metabolized in neutrophils and produces glutamate, but also aspartate, 
alanine, and lactate [63]. Pyruvate is a then a common product of glycolysis and glutami-
nolysis. Glutamate is the precursor of several other metabolites including malate, and there-
fore NADPH generation through malate dehydrogenase and malic enzyme [109]. Glutamine 
and glutamate provide nitrogen for nucleotides and nucleic acids synthesis [99] . Glutamine 
transfers an amino group to a fructose-6-phosphate molecule. Fructose-6-phosphate trans-
aminase catalyzes this reaction and generates glucosamine. The latter is an amino sugar 
involved in the glycosylation of proteins and lipids [110] with specific roles in cell functions.

The activity of NOX has been assessed in rat neutrophils cultured with glutamine [80]. 
The NOX activity and the production of superoxide induced by PMA is enhanced still further 
by up to 100% in the presence of glutamine in comparison to neutrophils cultured without 
glutamine [111]. α-Ketoglutarate also enhances neutrophil function. α-Ketoglutarate stimu-
lates the generation of superoxide and hydrogen peroxide, and raises myeloperoxidase activ-
ity in cultured neutrophils [112]. Extracellular glutamine levels regulate neutrophil super-
oxide production and cytolytic activity [113]. Glutamine raises bactericidal activity, phago-
cytosis, and production of ROS in neutrophils from postoperative patients [114, 115]. The 
administration of glutamine improves neutrophil function in burned patients. Glutamine 
enhances the bactericidal activity of neutrophils in the mentioned patients [114, 116]. In 
immunostimulated macrophages and monocytes, glutamine enhances IL-1, IL-6, TNF-α, and 
IL-8 release [102, 111, 117]. These reports above support the administration of glutamine as 
a nutritional supplement in critically ill patients [64, 118].

Control of neutrophil metabolism

Several researchers reported findings on the changes in neutrophil metabolism induced 
by hormones, endocrine dysfunction, and physical exercise (Table 1). Alba-Loureiro, et al. 
[66] reported decreased activities of G6PD and PDG and increased of PFK in in neutrophils 
from streptozotocin-induced diabetic rats. The authors also found reduced decarboxylation 
of glucose and glutamine and increased palmitic acid oxidation. The increase in palmitic 
acid oxidation under this condition may be an attempt to compensate for the reduced ATP 
production from glucose and glutamine metabolism. These metabolic changes associate 
with impaired neutrophil functions, such as reduction in phagocytosis and ROS production 
in diabetic states. The treatment with insulin abolished the diabetic state induced changes, 
and this effect was not associated with changes in blood glucose levels. Insulin does exhibit 
a direct impact on neutrophil metabolism and function [66].

Sexual steroid hormones controlled locally chemotactic mechanisms are associated 
with the periodic neutrophil accumulation in the rat vagina after estrus. This data provide 
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evidence that hormonal steroid changes control chemotactic factors and thus indirectly cell 
migration [119].

Testosterone increased neutrophil phagocytosis but decreased microbicidal activity 
[120]. Dexamethasone, a synthetic corticosteroid drug, was tested in cultured rats neutro-
phils. There was an augment of glucose consumption, but glucose oxidation did not alter. 
Glutamine consumption and oxidation remained unchanged, but glutamate production rose. 
Decreases of G6PD and PDG activities and mRNA expression occurred [121].

Hyperthyroidism associates with enhanced stimulated ROS production by neutrophils 
compared to cells from euthyroid rats. Hypothyroidism has the opposite effect and limits 
rat neutrophil ROS generation [122, 123]. Consumption of glutamine and oxidation by neu-
trophils decreased in the presence of adrenaline, an effect that is reversed by propranolol, 
thus confirming the participation of β adrenergic receptors [124]. Adrenaline did not affect 
the phagocytic capacity of neutrophils. However, the addition of 5 nM or 50 μM adrenaline 
potently reduced the rate of PMA-induced ROS production in the presence of glucose. Adren-
aline reduces the glucose flux through the PPP and so NADPH production for NOX activity 
[121].

Glutaminase activity was elevated by 50μM adrenaline treatment, suggesting that gluta-
mine utilization is more significant in the presence of this hormone. The level of the amino 
acid transporter for glutamine is under translational control and is modulated by nutrient 
availability and hormone concentrations [121]. Weiss, et al. [125] reported that the inhibi-
tion of O2

 production by adrenaline in the presence of glucose occurs via β (beta)-adrenocep-
tors, and dibutyryl cyclic adenosine monophosphate (db-cAMP) treatment mimicked this 
condition. Adenylate cyclase activity is stimulated by various respiration-enhancing agents 
in neutrophils [126]. Thus, cAMP and its immediate target, protein kinase A, may mediate 
the effects of adrenaline. There is a report on the reduction of respiratory burst induced by 
adrenaline via inhibition of phospholipase A2 activity in human neutrophils [127].

Hack, et al. [128] reported that graded exercise to exhaustion on a treadmill is associ-
ated with an increase in circulating neutrophil number, an increase in phagocytic capacity, 
and a marginal decrease in bacterial killing immediately after the effort. After 11 weeks of 
training, the exercised group had increased phagocytosis capacity (by 49%) and produc-
tion of ROS (6.6-fold) when compared with neutrophils from the sedentary group [22]. One                             

Table 1. Changes in neutrophil metabolism and outcomes induced by hormones, endocrine dysfunctions, 
and physical exercise. HG - Hyperglycemia; HT - Hypothyroidism; HP – Hyperthyroidism; ROS - reactive 
oxygen species
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session of ballet class increased neutrophil apoptosis as determined 18 hours afterward 
[129]. Regular moderate exercise increased neutrophil citrate synthase activity, phagocyto-
sis, and chemotaxis activity [130, 131].

The increase of ROS production in neutrophils induced by moderate exercise involves 
an increased expression of neutrophil cytosol factor 1 (p47phox), a cytosolic component of 
the NOX complex [132]. There is an increased expression of the ICAM adhesion molecule in 
neutrophils immediately after a marathon competition. Phagocytic capacity reduction oc-
curs in triathletes and marathon runners that may result from enhanced neutrophil apop-
tosis [133]. Our research group postulated that augmented blood levels of fatty acids (e.g., 
oleic, linoleic, and stearic acids) might be involved in elevated neutrophil death though apop-
tosis during a triathlon competition [134].

Robson, et al. [135] reported reductions in incubated neutrophil functions (e.g., degran-
ulation and oxidative burst) after an exhaustive physical exercise session in healthy athletes 
do not associate with plasma glutamine level changes. However, the increase in neutrophil 
apoptosis and decreased neutrophil function described above due to physical exercise may 
be attenuated by glutamine. Supplementation of this amino acid partially attenuated apop-
tosis induced by exercise in neutrophils from sexually immature and mature rats [136]. Neu-
trophils from rats orally treated with glutamine exhibit increased phagocytosis capacity. The 
same supplementation abolished the decreased neutrophil nitric oxide production and the 
increased production of ROS induced by exercise [6].

Impact of hypoxia on neutrophil metabolism and function

Tissue hypoxia is part of an inflammatory response, and neutrophils possess essential 
cellular and molecular mechanisms that enable them to function even at low oxygen con-
centrations [137]. Neutrophils have evolved several oxygen-sensing pathways, of which the 
principal regulators are the hypoxia-inducible transcription factor 1 and transcription fac-
tor 2 (HIF-1 and HIF-2) that are translocated to the nucleus and regulate gene transcrip-
tion [138]. Semenza group discovered a constitutively expressed beta unit HIF-1β and three 
alpha subunits (HIF-1α, HIF-2α, HIF-3α) [139-141]. Hypoxia induces neutrophil survival 
through the HIF-1α-dependent NF-κB pathway [138, 142]. This mechanism is critical for the 
resolution of inflammation since both prolonged survival and excessive neutrophil activa-
tion occur in many disease settings [137].

Hypoxia reduces neutrophil production of ROS due to the shortage of available molecu-
lar oxygen [143, 144]. This latter finding plays a crucial role in neutrophil degranulation 
response; ROS inhibit degranulation induced by signaling mediators. Neutrophils incubated 
under hypoxic conditions (0.8% O2, 3 kPa for 4 hours) compared with cells incubated under 
normoxic conditions (atmospheric O2 concentration), exhibit elevated release of elastase, 
myeloperoxidase, lactoferrin, and matrix metalloproteinase-9. These findings indicate in-
creased degranulation of azurophil (primary), specific (secondary), and gelatinase (tertiary) 
granules [145]. Despite potential benefits of hypoxia-augmented degranulation, including 
improved neutrophil access to sites of infection and intensified pathogen clearance, toxic 
granule products cause both local tissue damage and systemic complications [137, 143]. 
Thompson et al. reported that HIF-2 α-deficient murine inflammatory neutrophils display 
no impairment of chemotaxis, phagocytosis, or respiratory burst but elevated sensitivity 
to apoptosis, leading to reduced neutrophilic inflammation. Neutrophils carrying HIF-2 α 
gain-of-function mutations have lower apoptosis rates and play a role in the resolution of 
inflammation [146]. These isoforms exhibit distinct temporal expression profiles, with early 
HIF-1α upregulation and delayed HIF-2α, indicating functional divergence during different 
phases of an inflammatory response [147].

Hypoxia prolongs neutrophil survival by inhibiting apoptosis and represents an es-
sential regulator of timely resolution inflammatory responses [137, 148]. Neutrophils re-
duce mitochondrial respiration and increase ATP production through anaerobic glycolysis,                 
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accompanied by a time-dependent induction of key glycolytic enzymes such as glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) and triosephosphate isomerase-1 [138, 142]. 
HIF up-regulates glycolytic flux and suppresses the TCA cycle and the mitochondrial oxida-
tive phosphorylation chain [139, 149].

The HIF pathway’s regulation of leukocyte metabolism provides a mechanism by which 
innate immune cells can adapt to the hypoxic tissue environment. The understanding of the 
mechanisms by which hypoxia acts to control neutrophil metabolism and function will indi-
cate the host outcomes.

Neutrophil metabolism and outcomes

The major associations of neutrophil metabolism and outcomes are presented in sum-
mary (Fig. 1). Neutrophils play an important role in our body by triggering essential func-
tions when activated. In different inflammatory disorders, neutrophils exhibit different 
phenotypes, that requires appropriate metabolic activity. The metabolism of glucose mainly 
produces the ATP required for neutrophil activity. Neutrophils utilize glucose for the en-
ergy generating activity of the glycolytic metabolic pathway and for activation of the PPP, 
which is necessary to generate large quantities of NADPH and ROS. Glycogen breakdown 
increases when neutrophils are restricted with respect to glucose, mainly if they are actively 
engaged in phagocytosis, whereas re-synthesis occurs when adequate glucose is available. In 
a microenvironment with decreased glucose supply, neutrophil metabolism is diverted from 
glycolysis to mitochondrial energy production through oxidative phosphorylation. There is 
evidence that glutamine metabolism plays a role for several neutrophil functions including 
phagocytosis, ROS and cytokine productions, and apoptosis.

Chokesuwattanaskul, et al. [150] reported changes in human neutrophil metabolome 
induced by treatment with PMA using nuclear magnetic resonance (NMR) 1H spectroscopy. 
PMA induced significant changes in the contents of 43 metabolites either increase or de-
crease. The authors reported a redirection of glucose metabolism from glycolysis to PPP and 
so production of NADPH.

Metabolism of glucose and glutamine participates in NETs formation. 2-Deoxy-glucose 
(a glycolysis inhibitor) inhibits NET formation. Oligomycin, an ATP synthase inhibitor, also 
inhibits NET formation in a less pronounced manner. Rodríguez‐Espinosa, et al. [151] di-
vided NET formation metabolism into two phases. The first is independent of exogenous 
glucose (chromatin decondensation). The second (NET release) strictly depends on exog-
enous glucose and glycolysis. NOX-dependent and independent NETosis have been reported. 
Lactate formation from glycolysis closely associates with the initiation of the two mentioned 
NETosis types [152].

Glutamine delays the process of neutrophil apoptosis and changes mitochondrial func-
tion after only three hours in culture. Glutamine concentration positively correlates with 
phagocytic activity. Metabolism of glutamine, through a protective effect on mitochondrial 
integrity, may delay spontaneous apoptosis in neutrophils of rats and humans [153]. A prod-
uct of glutamine/glutamate metabolism is glutathione, which has been reported to stabilize 
the mitochondrial function of neutrophils and delay apoptosis [154].

Glutamine modulates expression of cytokines and transcription factors in different cell 
types [155, 156]. Glutamine supplementation reduces the neutrophilia and suppresses IL-8 
production by neutrophils after an exhaustive exercise in humans [157]. This amino acid 
decreases TNF-α production by in vitro LPS-treated neutrophils, indicating a possible pre-
serving effect of this cell function in infections. Glutamine is also involved in the modula-
tion of heat-shock proteins, a group of proteins that function as signaling proteins and as 
chaperones that help to fold denatured proteins caused by heat or other stressors [158]. 
The increase of HSP27, HSP70, and HSP72 protects against inflammatory injury or after cell 
exposure to heat shock or toxic contents [159, 160]. Glutamine carbon can be used to synthe-
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size amino acids during periods of active synthesis and secretion of protein molecules such 
as cytokines [161, 162].

Rice, et al. [163] reported that immature neutrophils require mitochondrial FAO to sup-
port NOX-dependent ROS production when glucose utilisation is restricted to ensure neo-
plastic cell growth. Neutrophils promote tumor progression partly by generating ROS that 
suppress T lymphocyte functions. There is evidence that blood neutrophils from patients 
with cancer display features of immaturity with enhanced mitochondrial content and oxida-
tive phosphorylation activity. Naffah de Souza, et al. [164] discovered a NOX-independent 
NETosis caused by high pH through increased ROS production in the mitochondria and in-
duction of histone citrullination and cleavage.

As reported above, neutrophils exhibit a remarkable plasticity that enables the cells to 
survive in extremes of metabolites availability. Metabolic shifts might occur to accomplish 
the neutrophil population heterogeneity described in cancer-associated neutrophil and in 
low and high density neutrophils of auto-immune diseases, for instance [165]. Intracellular 
metabolism of glucose, glutamine, and fatty acids may play a critical role in the differentia-
tion and functions of different neutrophil phenotypes. The close association of neutrophil 
metabolism with neutrophil plasticity requires further investigation.
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