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Abstract
Background/Aims: Diaphragm dysfunction with increased reactive oxygen species (ROS) 
occurs within 72 hrs post-myocardial infarction (MI) in mice and may contribute to loss of 
inspiratory maximal pressure and endurance in patients. Methods: We used wild-type (WT) 
and whole-body Nox4 knockout (Nox4KO) mice to measure diaphragm bundle force in vitro 
with a force transducer, mitochondrial respiration in isolated fiber bundles with an O2 sensor, 
mitochondrial ROS by fluorescence, mRNA (RT-PCR) and protein (immunoblot), and fiber 
size by histology 72 hrs post-MI. Results: MI decreased diaphragm fiber cross-sectional area 
(CSA) (~15%, p = 0.015) and maximal specific force (10%, p = 0.005), and increased actin 
carbonylation (5-10%, p = 0.007) in both WT and Nox4KO. Interestingly, MI did not affect 
diaphragm mRNA abundance of MAFbx/atrogin-1 and MuRF-1 but Nox4KO decreased it 
by 20-50% (p < 0.01). Regarding the mitochondria, MI and Nox4KO decreased the protein 
abundance of citrate synthase and subunits of electron transport system (ETS) complexes 
and increased mitochondrial O2 flux (JO2) and H2O2 emission (JH2O2) normalized to citrate 
synthase. Mitochondrial electron leak (JH2O2/JO2) in the presence of ADP was lower in Nox4KO 
and not changed by MI. Conclusion: Our study shows that the early phase post-MI causes 
diaphragm atrophy, contractile dysfunction, sarcomeric actin oxidation, and decreases citrate 
synthase and subunits of mitochondrial ETS complexes. These factors are potential causes 
of loss of inspiratory muscle strength and endurance in patients, which likely contribute to 
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the pathophysiology in the early phase post-MI. Whole-body Nox4KO did not prevent the 
diaphragm abnormalities induced 72 hrs post-MI, suggesting that systemic pharmacological 
inhibition of Nox4 will not benefit patients in the early phase post-MI.

Introduction

Myocardial infarction (MI) is one of the most common forms of pathology in the heart 
and results in cardiomyocyte dysfunction and death due to ischemia [1]. The primary 
concerns in the care of patients in the early phase post-MI are cardiac revascularization and 
arrhythmias. However, recent studies in patients and rodents identified that the early phase 
post-MI is accompanied by inspiratory muscle (diaphragm) weakness and endurance [2-
4], which bears relevance to the overall cardiopulmonary pathophysiology [5]. Diaphragm 
abnormalities contribute to dyspnea [6], impaired airway clearance [7], and elevated 
sympathetic nervous activity [8] – the latter is a critical determinant of arrhythmias post-MI 
[9, 10] that can lead to cardiac arrest and death [8, 11].

The early phase post-MI is characterized by elevated circulating inflammatory cytokines 
and angiotensin II [12, 13], which signal via reactive oxygen species (ROS) [3, 14].  Excess 
ROS causes muscle weakness due to atrophy and contractile dysfunction [15, 16] and 
impairs mitochondrial function [17]. A potential source of ROS downstream of inflammatory 
cytokines and angiotensin II is NADPH oxidase 4 (Nox4) [18, 19]. Nox4, which localizes in the 
sarcoplasmic reticulum and mitochondria [20-22], causes skeletal muscle atrophy induced 
by angiotensin II infusion and pancreatic cancer [14, 23], mediates contractile dysfunction 
in metastatic bone cancer [24], and promotes mitochondrial dysfunction [22]. In the early 
phase post-MI, the systemic environment is primed to activate Nox4 signaling [23, 25, 26]. 
However, the role of Nox4 on diaphragm atrophy, contractile dysfunction, and potential 
mitochondrial abnormalities in the early phase post-MI is unknown.

The main goal of this study was to test the role of Nox4 on diaphragm weakness in 
the early phase post-MI. Based on the localization of Nox4 in mitochondria [21] and the 
relevance of mitochondrial function to muscle health in several conditions [27], we aimed to 
define the impact of MI on diaphragm mitochondrial respiration and ROS emission and the 
role of Nox4 therein.

Materials and Methods

Animals and ethical approval
We conducted experiments on 7-9 months old male mice: twelve C57BL/6J (WT; Jackson Laboratories) 

and thirteen whole-body Nox4 knockout (Nox4KO; a gift from Drs. Ralf Brandes and Katrin Schröder). Nox4 
knockout mice were generated by targeted deletion of the translation initiation site and exons 1 and 2 of 
the gene as described previously [28]. We backcrossed the original litter of Nox4KO with C57BL/6J for over 
ten generations and confirmed the genotype of all Nox4KO mice used in this study (Supplementary Fig. S1 
– for all supplementary material see www.cellphysiolbiochem.com) following a previous protocol [29]. We 
housed the mice at the University of Florida Animal Care Facilities in a 12:12-h light-dark cycle and supplied 
standard chow and water ad libitum. We followed guidelines set by the National Institutes of Health for all 
animal procedures performed in this study. The protocol was approved by the Institutional Animal Care and 
Use Committee of the University of Florida.

Coronary artery ligation
Animals went through ligation of the coronary artery to cause myocardial infarction using aseptic 

procedures or sham surgery. We anesthetized the animals with a mixture of isoflurane (3-5% for induction, 
2-3% for maintenance) and oxygen, shaved the left side of the thorax, and cleaned the surgical area with 
4% chlorhexidine gluconate and sterile saline. When animals reached the surgical plane of anesthesia, we 
performed orotracheal intubation and connected the animal to a rodent respirator (Model 683, Harvard 
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Apparatus Inc. Holliston, MA). We made incisions through the skin using a scalpel blade and bluntly 
dissected the thoracic muscle layer and intercostal muscles to expose the heart. Once the heart was exposed, 
we removed the pericardium and ligated the left anterior descending coronary artery close to the left atrium 
with a 6-0 monofilament absorbable PGA suture (DemeSORB™, DemeTECH, Miami Lakes, FL). After the 
ligation, we hyperinflated the lungs and closed the chest wall (6-0 PGA suture, DemeSORB™, DemeTECH) 
and skin (3-0 Nylon, Demelon™, DemeTECH). The animals in the sham group went through the same 
procedure except for the coronary artery ligation. We injected buprenorphine SR-LAB (ZooPharm, Laramie, 
WY) subcutaneously (1.0 mg/kg) immediately before surgery for analgesia. We supplied moist chow at the 
bottom of the cage and kept the cage for three days on top of a water-heated pad (Stryker, Kalamazoo, MI) 
to maintain the temperature of the cage at ~32°C.

Terminal experiments
We performed terminal experiments 72 hrs post-surgery. After we anesthetized the animal with 

isoflurane (5% induction, 2-3% maintenance), we performed laparotomy to collect the whole diaphragm 
and heart. We used the left hemidiaphragm to assess contractile function and the right hemidiaphragm 
for mitochondrial assays with saponin-permeabilized muscle fiber bundles. The unused portions of the 
diaphragm were snap-frozen in liquid nitrogen or embedded in Tissue-Tek OCT freezing medium (Sakura 
Finetek, Torrance, CA), frozen in liquid nitrogen-cooled isopentane, and stored at -80°C. We measured the 
weight of the heart after removing the atria and saved it in Tissue-Tek OCT freezing medium following the 
procedures described above for the diaphragm.

Histology
We used a cryostat (CM 3050S, Leica, Biosystems, Buffalo Grove, IL) set at -20°C to collect 10 µm cross-

sections of the diaphragm and heart samples frozen in Tissue-Tek OCT freezing medium (Sakura Finetek, 
Torrance, CA). After transferring sections to the microscope slides, we covered the sections with wheat 
germ agglutinin (WGA) Texas Red (Molecular Probes, Eugene, OR) diluted in 1:200 at room temperature 
(15 min for heart, 1 hr for diaphragm). We washed the sections in phosphate-buffered saline (PBS) for 
3 × 5 min, allowed them to dry, and followed different approaches for heart and diaphragm sections. For 
heart sections, we made panoramic images using an inverted microscope (Axio Observer, Zeiss, Thornwood, 
NY) connected to a camera (AxioCam ERc5s) and Zen Pro software (Zeiss Thornwood, NY). The percentage 
infarct size was the average percentage of endocardial and epicardial infarct length. We used this approach 
as WGA lectin binds to N-acetylglycosamin, which is rich in the extracellular matrix and connective tissue in 
the scar of the infarcted area [30].

For the diaphragm, we permeabilized the sample (after WGA staining and washes) with 0.5% Triton 
X-100 solution for 5 min, washed in PBS for 5 min, and incubated in primary antibodies in a humid chamber 
for 1.5 hrs. We used primary antibodies for myosin heavy chain type I (A4.840, 1:15; Developmental Studies 
Hybridoma Bank, Iowa City, IA) and type IIa (SC-71, 1:50, Developmental Studies Hybridoma Bank, Iowa 
City, IA). Subsequently, we washed the sample in PBS for 3 × 5 min and incubated it with fluorescently 
conjugated secondary antibodies (Goat × Mouse IgM Alexa 350 and Goat × Mouse IgG Alexa 488, Invitrogen, 
Carlsbad, CA) for 1 hr. We washed the sectioned tissue in PBS for 3 × 5 min and allowed it to dry. Lastly, 
we imaged the sections using an inverted fluorescence microscope (Axio Observer, Zeiss, Thornwood, NY) 
connected to a fluorescence camera (AxioCam MRm, Zeiss, Thornwood, NY) and Zen Pro software (Zeiss, 
Thornwood, NY). We used an automated image quantification platform to analyze fiber type distribution 
and cross-sectional area (MyoVision, University of Kentucky College of Health Sciences, Lexington, KY) [31].

qPCR
We retrieved diaphragm samples from Tissue-Tek OCT freezing medium (Sakura Finetek, Torrance, 

CA) in sterile PBS and homogenized them in TRI-Reagent (Sigma Aldrich, St. Louis, MO) using stainless 
steel beads and a bullet blender (Next Advanced, Troy, NY). We isolated RNA by using the Direct-Zol RNA 
Microprep kit (Zymo Research, Irvine, CA). We assessed RNA quantity and quality with UV spectroscopy 
(Thermo Fisher, Waltham, MA), then generated cDNA using the Quantabio qScript cDNA synthesis kit 
(Quantabio, Beverly, MA). Real-time PCR was performed on a Quantstudio 3 thermocycler (Thermo 
Fisher, Waltham, MA) using Taqman Universal Master Mix II and Taqman probes (all from Thermo Fisher, 
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Waltham, MA) for Nox4 (Mm00479246_m1), Fbxo32 (Mm00499523_m1; MAFbx/atrogin-1), and Trim63 
(Mm01185221_m1; MuRF-1). Results were normalized to HPRT (Mm00446968_m1) and gene expression 
was calculated relative to the WT-Sham group using the ΔΔCT method.

Diaphragm contractile function in vitro
We immersed the left hemidiaphragm in bicarbonate buffered solution (in mM: 137 NaCl, 5 KCl, 

1 MgSO4, 1 NaH2PO4, 24 NaHCO3, 2 CaCl2) bubbled with a mixture of 95% O2 and 5% CO2 gas at room 
temperature and isolated a strip with ribs and central tendon attached to it. We tied the rib to a glass rod 
(158816; Radnoti, Monrovia, CA) and attached the central tendon to a Dual-Mode Muscle Lever System 
(300C-LR, Aurora Scientific Inc., Aurora, Canada) with 4-0 silk suture (Fine Scientific, Foster City, CA). We 
kept the bundle between platinum electrodes connected to a biphasic high-power stimulator (701C, Aurora 
Scientific Inc., Aurora, Canada) in a water-jacketed organ bath filled with Krebs buffer continuously bubbled 
with 95% O2 and 5% CO2 gas. We found the optimal length of the bundle (L0) by measuring tetanic force in 
response to 120 Hz stimulation (600 mA current, 0.25 ms pulse) at room temperature. After we placed the 
bundle at L0, we increased the temperature of the organ bath and allowed 10 min for thermo-equilibration 
at 37°C, and stimulated at frequencies of 1, 30, 50, and 300 Hz.

After the protocol, we retrieved the diaphragm bundle from the apparatus, blotted it dry, and measured 
the bundle weight. We calculated the diaphragm bundle cross-sectional area (CSA, cm2) based on the wet 
weight (g) and estimated muscle density (1.056 g/cm3) [32] to determine the specific force (N/cm2). We 
used the ‘high throughput’ function of DMA software (Aurora Scientific, Aurora, Canada) to analyze isometric 
contractile properties.

Muscle bundle preparation for mitochondrial function assessment
Our optimized approach to prep the mouse diaphragm for saponin-permeabilization of fiber bundles 

has been described in detail recently [33]. Briefly, we placed the diaphragm sample in fresh ice-cold buffer X 
(in mM: 7.23 K2EGTA, 2.77 Ca-K2EGTA, 20 imidazole, 20 taurine, 5.7 ATP, 14.3 PCr, 6.56 MgCl2-6H2O, 50 
K-MES; pH 7.1) in a tissue culture dish with silicone gel. After removing the ribs, blood clots, adipose and 
connective tissues, we cut the diaphragm perpendicular to the fiber orientation along the phrenic nerve and 
peeled off the abdominal fascia and muscle fiber layer. We used the ‘pleural layer’ of diaphragm fibers for 
bundle preparation, as this side contains a thinner fascia and less connective tissue than the abdominal side 
[34]. We teased individual fibers longitudinally and left 0.1-0.2 mm of the fibers attached at the end of the 
bundle to prevent losing fibers during washing and transfer between containers. We trimmed the distal end 
of the separated fibers to remove portions potentially damaged during the teasing process. We transferred 
the separated bundles to microcentrifuge tubes with 1.5 ml of buffer X + saponin (30 µg/ml), and rotated 
the tubes for 30 min at 4°C. Lastly, we washed the bundles for 3 × 5 min at 4°C in a microcentrifuge tube 
with 1.5 ml buffer Z (in mM: 30 KCl, 10 KH2PO4, 5 MgCl2-6H2O, 105 K-MES, and 0.5 mg/ml BSA; pH 7.1). The 
individual bundles were then allocated to measurements of mitochondrial respiration (2 bundles) and ROS 
emission (1 bundle).

Mitochondrial respiration
We measured O2 consumption at 37°C in buffer Z containing 20 mM creatine monohydrate and 

10 µM blebbistatin [35] in a high-resolution respirometer (O2K Oxygraph; Oroboros, Innsbruck, Austria). 
We used Hamilton Syringes (Hamilton, Reno, NV) to add substrates and cytochrome c in the following 
order: 5 mM pyruvate + 0.5 mM malate (State 2 respiration, complex I), ADP (100 µM, 500 µM; State 3 
respiration, complex I), 10 mM cytochrome c (mitochondrial membrane integrity), and 10 mM succinate 
(State 3 respiration, complex I+II). We initiated the experiment when the O2 concentration of the buffer 
was stabilized at approximately 400 µM, and reoxygenated the buffer when O2 concentration was less than 
250 µM during the protocol. Once we finished the measurements, we retrieved the bundles to quantify 
the total protein content of the bundles (DC Assay, Bio-Rad Laboratories, Hercules, CA). We completed the 
experiments in two bundles per mouse and used the average JO2 for data analysis. We excluded bundles 
that displayed a JO2 increase ≥ 10% upon addition of cytochrome c from analysis (2 bundles from separate 
animals within WT-MI, 1 bundle from Nox4KO-MI). The bundles used for mitochondrial respiration were 
retrieved from the O2K chamber, blotted dry, transferred to a microcentrifuge tube, snap-frozen in liquid 
nitrogen, and stored at -80°C. For measurement of total protein content in permeabilized bundles, we 
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added 50 µl of mitochondrial isolation medium to the microcentrifuge tube, homogenized the samples in 
the microcentrifuge tube using a motor-driven polypropylene micropestle, centrifuged the homogenate at 
500 g for 7 min at 4°C (#5424 Eppendorf, Hauppauge, NY), and used the supernatant for measurement of 
total protein content (DC Assay, Bio-Rad Laboratories, Hercules, CA). The JO2 data were normalized to total 
protein per bundle and citrate synthase abundance to estimate intrinsic mitochondrial respiratory function 
[36].

Mitochondrial reactive oxygen species emission
We used an assay based on Amplex Ultra Red (Life Technologies, Eugene, OR) fluorescence 

(λEm = 565 nm, λExc = 600 nm) to measure H2O2 emission from permeabilized diaphragm fiber bundles in 
a fluorometer (Fluorolog-3, Horiba Jobin Yvon Inc., Edison, NJ) with a 1 ml quartz cuvette (14-958-109, 
Fisherbrand, Pittsburgh, PA) maintained at 37°C. The assay solution contained 10 µM Amplex Ultra Red, 
25 µM blebbistatin, 20 mM creatine monohydrate, 30 mM KCl, 10 mM KH2PO4, 5 mM MgCl2-6H2O, 8 µM BSA, 
105 mM K-MES, 1 mM EGTA; pH 7.1, 30 U/ml superoxide dismutase, and 1 U/ml horseradish peroxidase. 
Initially, we allowed a 5-min period for thermal equilibration and stabilization of the fluorescence signal. 
Subsequently, we measured H2O2 emission rates from the permeabilized fiber bundles at baseline and 
after stepwise addition of substrates as in the mitochondrial respiration experiment. Once we finished the 
measurements, we retrieved the bundle to determine the total protein content of the bundles as described 
for mitochondrial respiration. Before each round of the experiment, we defined a standard curve for the 
relationship between Amplex Ultra Red fluorescence and [H2O2], converted fluorescence values to [H2O2], 
and subtracted baseline H2O2 rate to obtain the substrate-induced H2O2 flux, JH2O2. We calculated the 
JH2O2/JO2 × 100 under matching conditions of JH2O2 and JO2 measurements to determine the percentage 
mitochondrial ETS electron leak.

SDS-PAGE and immunoblotting
We homogenized the diaphragm samples using a Kontess Duall Homogenizer in mitochondrial 

isolation medium (in mM: sucrose 300, Tris 10, EGTA 1; pH 7.1), centrifuged the homogenate at 500 g for 7 
min at 4°C (#5424 Eppendorf, Hauppauge, NY) and saved the supernatant for measurement of total protein 
content (DC Assay, Bio-Rad Laboratories, Hercules, CA) and SDS-PAGE and immunoblotting. We mixed the 
supernatant 1:3 with 4× Laemmli buffer (Bio-Rad Laboratories, Hercules, CA) with 0.35 M dithiothreitol, 
loaded approximately 15 µg of protein per lane into 4-20% Criterion™ TGX™ stain-free gels (Bio-Rad 
Laboratories, Hercules, CA), and ran electrophoresis for 50 min at 200 V with the apparatus surrounded 
by ice. We activated and scanned the gel in a Gel Doc EZ Imager (Bio-Rad Laboratories, Hercules, CA) and 
determined the total protein in each lane (Image Lab, Bio-Rad Laboratories, Hercules, CA). Subsequently, 
we transferred the proteins to a nitrocellulose membrane (GE Healthcare Life Sciences, Pittsburgh, PA) at 
a constant current (100 mA) overnight at 4°C. We blocked the membrane with Odyssey Blocking Buffer 
(LI-COR, Lincoln, NE) for 1 hr at room temperature. Then, we washed the membrane with Tris-buffered 
solution (TBS) for 5 min and incubated it with primary antibody for citrate synthase (ab96600; Abcam, 
Cambridge, MA) at 1:1,000 dilution and total OXPHOS antibody cocktail (ab110413; Abcam, Cambridge, 
MA) at 1:1,000 dilution for 1 hr at room temperature to detect citrate synthase and mitochondrial complexes 
I-V. Thereafter, we washed the membrane with TBS containing 0.1% of TWEEN®-20 (Sigma-Aldrich, St. 
Louis, MO) 4 × 5 min, followed by a TBS rinse for 5 min. We then incubated the membrane with secondary 
antibodies IRDye680 (926-68020; LI-COR, Lincoln, NE) at 1:40,000 dilution and IRDye800 (926-32211; LI-COR, 
Lincoln, NE) at 1:20,000 dilution for 1 hr in the dark, followed by a rinse as described above. We scanned 
the membrane in Odyssey CLx Infrared Imaging System (LI-COR, Lincoln, NE) and used Image Studio Lite 
Software (Li-COR, Lincoln, NE) to quantify the optical density of specific bands. We normalized the signal 
for each target protein to the total protein per lane, which were all within the linearity of the assays.  We 
did not measure Nox4 protein abundance because there was no commercial antibody that reliably detected 
Nox4 – all antibodies tested showed a protein band in knockout animals, despite confirmed genotype and 
undetectable Nox4 mRNA.

For determination of myosin heavy chain and actin abundance and actin carbonylation, we homogenized 
the diaphragm samples in ice-cold high-salt protein isolation buffer (in mM: 300 NaCl, 100 NaH2PO4, 
50 Na2HPO4, 10 Na4P2O7, 1 MgCl2, 10 EDTA, 1 dithiothreitol; pH 7.1) [37, 38] containing Halt protease inhibitor 
cocktail (Thermo Scientific, Waltham, MA). After homogenization, we centrifuged the samples at 10,000 g 
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for 3 min at 4°C and used the supernatant for the assays. We measured total protein content with a Bradford 
assay (23246; Thermo Fisher Scientific, Waltham, MA), diluted the samples to similar protein contents, and 
mixed 1:1 with 2× Laemmli buffer (Bio-Rad Laboratories, Hercules, CA) containing 0.35 M dithiothreitol 
and heat-denatured for 4 min at 100°C. We loaded approximately 0.6 µg of total protein per lane, performed 
SDS-PAGE using Stain-FreeTM gel (Bio-Rad), activated and scanned the gel (Gel-Doc EZ System, Bio-Rad) for 
quantification of total protein (ImageLabTM, Bio-Rad), transferred to a nitrocellulose membrane (100 mA 
overnight), and used a commercial kit (OxiSelect STA-308; Cell Biolabs, San Diego, CA) to determine actin 
carbonylation [39]. Accordingly, we incubated the membrane in TBS containing 20% methanol for 5 min 
and washed in 2 N HCl for 5 min. We incubated the membrane with DNPH (2,4-dinitrophenylhydrazine) 
in 2 N HCl for derivatization of the carbonyl group for 5 min. Subsequently, we washed the membrane in 
2 N HCl 3 × 5 min and TBS containing 50% methanol 5 × 5 min. We blocked the membrane with Odyssey 
Blocking Buffer (LI-COR, Lincoln, NE) for 1 hr, rinsed in TBS containing 0.1% of TWEEN®-20 (Sigma-Aldrich, 
St. Louis, MO) 4 × 5 min, and probed with primary antibody for DNP (2,4-dinitrophenol, 230801; Cell 
Biolabs, San Diego, CA) at 1:1,000 dilution. After washing steps, a secondary antibody IRDye800 (926-32211; 
LI-COR, Lincoln, NE) probed the membrane at 1:20,000 dilution for 1 hr in the dark, followed by washes 
and membrane scan in Odyssey CLx Infrared Imaging System (LI-COR, Lincoln, NE). Afterward, we exposed 
the same membrane to a primary antibody for actin (JLA20; Developmental Studies Hybridoma Bank, Iowa 
City, IA) at 1:1,000 dilution. After washing, we incubated the membrane with secondary antibody IRDye680 
(926-68020; LI-COR, Lincoln, NE) at 1:40,000 dilution for 1 hr in the dark. We probed for actin and DNP on 
the same membrane using two fluorescence channels (λ = 700 and 800 nm for secondary antibodies). We 
used GelBandFitter [40] and Image Studio Lite Software (Li-COR, Lincoln, NE) to quantify the optical density 
of proteins and determined actin carbonylation as the carbonyl signal overlapping the actin band divided 
by total actin [39]. Actin carbonylation data are the average values of measurements in triplicate. We also 
quantified the abundance of myosin heavy chain based on the signal intensity of the band corresponding to 
200-250 kDa of the Stain-Free gel.

Statistics
We used SigmaPlot v14.0 (Systat Software, San Jose, CA) to perform normality and equal variance 

tests and log-transformed non-parametric data before analysis with parametric tests. We used Prism v6 
(GraphPad, La Jolla, CA) to run a two-way ANOVA with Bonferroni’s posthoc test (factor 1, strain: WT 
vs. Nox4 KO; factor 2, surgery: Sham vs. MI). In some cases, we performed posthoc tests when the two-
way ANOVA interaction p-value was greater than 0.05 [41]. Because fiber cross-sectional area includes 
several measurements per animal, we applied a linear mixed model analysis to compare these variables 
among groups (SPSS v26, IBM, Armonk, NY). Where appropriate, we compared data with paired or 
unpaired Student’s t-test as needed. We used the Mann-Whitney rank-sum test for a failed normality test 
and Welch’s t-test in case of a failed equal variance testing. All statistics are from two-tailed tests, and we 
highlighted differences when p < 0.05. We opted to report exact p-values when feasible and follow recent 
recommendations for data interpretation [42, 43].

Results

We performed MI surgeries on 16 mice (WT n = 8, Nox4KO n = 8) and Sham surgeries 
on 10 mice (n = 5 per strain). Two WT mice died within 48 hrs of MI surgery. One Nox4KO 
mice assigned to the MI group had to be euthanized during surgery because of an accidental 
ventricular tear and excessive bleeding in the process of coronary artery ligation. All 
animals in the Sham group survived the duration of the study. Genotyping confirmed Nox4 
knockout (Supplementary Fig. S1). There was no difference in infarct size between strains, 
and MI caused cardiac hypertrophy, evident by a ~30% increase in heart weight-to-tibial 
length (Table 1, Supplementary Fig. S2). MI caused a greater percent loss of body weight 
compared to Sham 72 hrs post-surgery (Table 1, Supplementary Fig. S3). Diaphragm Nox4 
mRNA was elevated almost 80% in WT with MI but did not reach the threshold for statistical 
significance (in fold control: Sham = 1.00 ± 0.09, MI = 1.77 ± 0.65; p = 0.057). Nox4 mRNA 
was undetectable in Nox4KO mice.
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Diaphragm atrophy, contractile dysfunction, and protein oxidation
Diaphragm fiber cross-sectional area (CSA) was 15% lower in Nox4KO vs WT within 

Sham (Fig. 1B). MI decreased the overall fiber CSA by 10-20% in both WT and Nox4KO (Fig. 
1B). Fiber type-specific analysis (Fig. 1C-E) showed that MI decreased type IIb/x fiber CSA 
by 20% in both WT and Nox4KO. Type IIa fiber CSA was lower post-MI than Sham, but the 
surgery effect on ANOVA did not reach the threshold for statistical significance (p = 0.056). 
There was no surgery or strain effect on type I CSA. Surprisingly, Nox4KO mice showed 30-
50% lower mRNA abundance for MAFbx/atrogin-1 (Fig. 1F) and MuRF-1 (Fig. 1G). Analysis 
of fiber type percentage showed higher type IIa and lower type IIb/x fibers in Nox4KO vs. 
WT, whereas MI did not affect fiber type distribution (Supplementary Fig. S4).

MI decreased maximal diaphragm specific force by 10% in both WT and Nox4KO 
(Fig. 2A). In Nox4KO, MI decreased twitch specific force by 20% (Fig. 2B). The decrease in 
force was accompanied by increased actin carbonylation in WT and Nox4KO MI vs. Sham 
(Fig. 2C, D), and there were no changes in the most abundant thick (MyHC) and thin (actin) 
filament proteins with MI or Nox4 KO (Supplementary Fig. S5).

Table 1. Animal characteristics. Each row contains p-values from two-way ANOVA for each factor and 
interaction for body weight, heart weight analysis. We performed unpaired Student’s t-test for infarct size in 
MI WT vs. Nox4 KO. HW, heart weight; TL, tibial length. Data are means ± SD. *p < 0.05 by two-way ANOVA 
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resentative images of transverse 
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(B-E) Fiber cross-sectional area. 
(F, G) mRNA levels of MAFbx/atro-
gin-1 and MuRF-1. Data are fold-
control relative to WT-Sham. Bars 
are mean values. N = 3-6 mice/
group. Statistical analysis by linear 
mixed model (B-E) and two-way 
ANOVA (F, G). * p<0.05.
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Mitochondrial proteins, respiration, and H2O2 emission
In WT mice, MI decreased the abundance of citrate synthase and protein subunits of 

the mitochondrial electron transport system (ETS) complex I-V compared to Sham (Fig. 
3). Nox4KO decreased the abundance of citrate synthase and subunits of ETS complexes 
I-V compared to WT and did not prevent the MI-induced decrease in citrate synthase and 
subunits of ETS complexes I and II (Fig. 3B-D).

The effects of Nox4KO and MI on protein abundance of subunits of mitochondrial ETS 
complexes did not translate to lower mitochondrial O2 flux (Fig. 4A-D). MI had no detectable 
effect on diaphragm fiber JO2 (pmol/s/μg total protein), but Nox4KO displayed higher values 
than WT, particularly in Sham with complex I and I+II substrates during State 3 (ADP 500 
µM). The JO2 normalized to citrate synthase abundance was higher post-MI (Fig. 4E-F), with 

Fig. 2. Diaphragm isometric forces 
and actin carbonylation. (A) Maxi-
mal specific force (N/cm2), (B) 
Twitch specific force (N/cm2), (C) 
Specific force-frequency relation-
ship, (D) Immunoblots of carbon-
ylated actin (DNP: 2,4-dinitrophe-
nol) and actin (horizontal bars ~37 
kDa). (E) Optical density of band 
corresponding to actin (DNP) nor-
malized to actin signal in Western 
Blot image. Bars show mean val-
ues. N = 4-7 mice/group. Statistical 
analysis by two-way ANOVA and 
Bonferroni post-hoc test. *p<0.05.
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Fig. 3. Diaphragm mitochondrial 
protein abundance. (A) Immu-
noblots of citrate synthase (top), 
mitochondrial ETS complexes I-V 
subunits (middle), and represen-
tative region of total protein gel 
(bottom). Approximate molecular 
weights (MW) shown by horizon-
tal dashed lines. (B-F) Quantifica-
tion of immunoblot optical density 
normalized to total protein signal 
from each lane. Bars show mean 
values. N = 5-6 mice/group. Statis-
tical analysis by two-way ANOVA 
and Bonferroni post-hoc test. 
*p<0.05.
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differences determined mainly by WT Sham vs. MI. Nox4KO increased the respiratory control 
ratio (RCR) with 500 µM ADP (RCR; JO2 State 3-to-State 2), but there was no effect of MI on 
RCR (WT-Sham = 2.3 ± 0.4, WT-MI = 2.4 ± 0.3, Nox4KO-Sham = 3.0 ± 0.5, Nox4KO-MI = 3.3 ± 
0.5; ANOVA strain p < 0.001, surgery p = 0.388, strain × surgery p = 0.753).

H2O2 emission
There were no differences in diaphragm JH2O2 (pmol/min/100 µg protein), except for 

complex I+II substrates in the presence of ADP with lower values in Nox4KO that did not 
reach statistical significance (Fig. 5A-C). However, JH2O2 normalized to citrate synthase 
abundance was 50-65% higher post-MI (Fig. 5D-F), independent of strains. Electron leak 
(JH2O2/JO2) in the absence of ADP was also higher post-MI for both strains but did not reach 
p < 0.05 (Fig. 5G). Nox4KO decreased the electron leak in the presence of ADP, but there were 
no differences between Sham and MI for both strains (Fig. 5H).

Discussion

There are several novel and interesting observations in our study regarding diaphragm 
abnormalities and adaptations in the early phase post-MI, the impact of Nox4 knockout 
therein, and the role of Nox4 in diaphragm physiology: 1) Diaphragm atrophy is a crucial 
component of weakness in the early phase post-MI, 2) mitochondrial respiration and H2O2 
emission normalized to citrate synthase (~mitochondrial content) increased early post-MI, 
3) Nox4 knockout did not prevent the decrease in diaphragm fiber size and specific force 
in the early phase post-MI, and 4) Nox4 is required for the maintenance of diaphragm 
mitochondrial content in healthy animals and contributes to electron leak in the presence 
of ADP.

Fig. 4. Oxygen consumption rate (JO2) from permeabilized diaphragm fiber bundle with substrates for com-
plex I, II and ADP. (A-D) JO2 normalized to fiber bundle protein content (JO2: pmol/s/µg). (E-H) JO2 normal-
ized to fiber bundle citrate synthase abundance (JO2/CS: pmol/s/CS a.u.), where a.u. is arbitrary unit. Bars 
show group mean. N = 5-6 mice/group. Statistical analysis by two-way ANOVA. *p<0.05. Panels E and F: 
Student t-test showed p<0.001 for Wildtype Sham vs MI, but no statistically significant difference between 
Nox4KO Sham and MI.
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Nox4 and cardiac pathophysiology in the early phase post-MI
The first 72 hrs after cardiac ischemia involves the expansion of the infarct area, and 

it has been defined as ‘early-stage’ [44]. Then, the left ventricle goes through a wider scale 
of remodeling that includes compensatory left ventricular hypertrophy and fibrosis that 
become pathological [45], and it has been defined as late-stage [44]. In the early phase 
post-MI, Nox4 is upregulated in the heart [46]. The effect of Nox4 on cardiac remodeling 
and function post-MI remains controversial. Transgenic cardiomyocyte overexpression of 
Nox4 diminished cardiac hypertrophy and fibrosis and increased survival post-MI induced 
by permanent ischemia [25]. In contrast, cardiomyocyte-specific or whole-body Nox4 KO 
lowers ROS and infarct size after MI induced by ischemia-reperfusion injury or permanent 
ischemia [26, 47]. We observed no differences in cardiac hypertrophy and infarct size in the 
early phase post-MI induced by permanent ischemia. The specific role of Nox4 on cardiac 
responses post-MI is beyond the scope of our study, and we did not pursue the mechanisms 
underlying our findings. In general, the lack of difference in cardiac hypertrophy and left 
ventricle infarct size suggests that WT and whole-body Nox4 knockout mice in our study had 
similar levels of cardiac dysfunction post-MI.

Nox4, atrophy, and contractile dysfunction
Diaphragm contractile dysfunction and atrophy are potential causes of decreased 

maximal inspiratory pressure in patients in the initial stages post-MI [2]. Contractile 
dysfunction has been shown in studies reporting lower maximal specific force in mouse 
diaphragm 72 hrs post-MI [3, 4]. Our data confirm the contractile dysfunction previously 
reported and show pronounced diaphragm fiber atrophy, especially in type IIb/x fibers. 
Diaphragm fiber atrophy will cause weakness (diminished absolute force) and contribute 
to the loss of maximal inspiratory pressure in patients in the early phase post-MI. We 
examined mRNA abundance of select ‘atrophy genes’ (MAFbx/atrogin and MuRF-1) – critical 

Fig. 5. Hydrogen peroxide emis-
sion rate (JH2O2) from the permea-
bilized diaphragm fiber bundle 
with substrates for complex I, II 
and ADP. (A-C) JH2O2 normalized 
to total protein content of the fiber 
bundle (JH2O2: pmol/min/100 µg 
total protein). (D-F) JH2O2 normal-
ized to citrate synthase content of 
the fiber bundle (JH2O2/CS: pmol/
min/CS). (G, H) % Electron leak 
(JH2O2/JO2) by parallel measure-
ments of O2 consumption rates and 
H2O2 emission rates. Bars show 
group mean. N = 5-6 mice/group. 
Statistical analysis by two-way 
ANOVA. *p<0.05.
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determinants of diaphragm atrophy with mechanical ventilation [48], chronic heart failure 
[49], and COPD [50] – but were unable to detect differences induced by MI or test protein 
levels due to high variability and limited tissue availability. Importantly, ROS and Nox4-
dependent signaling mediate skeletal muscle atrophy and contractile dysfunction [14, 23, 
51]. Diaphragm Nox4 mRNA was increased 72 hrs post-MI, albeit not reaching statistical 
significance, and we considered Nox4 as a putative source of ROS and diaphragm atrophy 
and contractile dysfunction based on Nox4 constitutive activity [52].

Nox4 is an essential regulator of muscle fiber size. In limb muscles, Nox4 is required 
for overload-induced hypertrophy [53] and regeneration/growth after injury [54]. Nox4 
KO prevents skeletal muscle atrophy caused by angiotensin II infusion [14] or pancreatic 
cancer [23]. However, limb muscle fiber cross-sectional area is not different in healthy 
Nox4 KO and WT mice [14, 54]. In general, the diaphragm fiber cross-sectional area was 
15% smaller in Nox4 KO than wild-type mice. A smaller type IIa fiber cross-sectional area, 
although not statistically significant, and higher percentage distribution for type IIa fiber 
in Nox4 KO (Supplementary Fig. S4B), seems to be the major determinant of lower overall 
diaphragm fiber cross-sectional area in Nox4 KO. Surprisingly, diaphragm from Nox4 KO 
mice displayed lower mRNA abundance of MAFbx/atrogin and MuRF-1. However, Nox4 
KO causes insulin resistance and impairs glucose uptake in the diaphragm [55], which is a 
muscle highly dependent on circulating glucose for carbohydrate metabolism in mice [56]. 
Thus, differences in insulin signaling and glucose metabolism may contribute to the smaller 
type IIa fiber size in Nox4 KO mice.

Elevation of ROS and protein oxidation in disease states and disuse depress diaphragm 
contractile function [57]. Nox4 is a source of ROS in skeletal muscle [20, 58], and pharmacologic 
inhibition of Nox4 prevents contractile dysfunction caused by metastatic bone cancer [24]. 
Loss of diaphragm specific force within 72 hrs post-MI is accompanied by actin oxidation 
(carbonylation) [3], which impairs protein function [16]. These observations, along with 
elevated Nox4 mRNA, led us to hypothesize that Nox4-dependent ROS caused diaphragm 
contractile dysfunction in the early stage post-MI. Contractile dysfunction in our study was 
evident from decreased maximal specific force post-MI. In agreement with a previous study 
[3], contractile dysfunction was accompanied by increased actin carbonylation. However, 
Nox4 KO did not prevent the loss of maximal specific force or actin carbonylation in the early-
stage post-MI. Overall, our findings suggest that Nox4-dependent ROS are not mediators of 
actin carbonylation and diaphragm contractile dysfunction within the first 72 hrs post-MI.

Nox4 and MI impact on mitochondrial proteins, respiration, and ROS
The inflammatory and neurohumoral milieu in the early-stage post-MI can impair 

mitochondrial respiration [59, 60]. Abnormal mitochondrial respiration is a putative cause 
of diminished time to task failure when patients breathe against an inspiratory resistance 
in the early phase post-MI [2]. MI decreased the protein abundance of citrate synthase and 
subunits of mitochondrial ETS complexes in our study but did not affect State 3 respiration 
in WT mice. In fact, JO2 normalized to citrate synthase was increased with MI in wild-type 
mice, which may reflect a compensatory functional adaptation to increased frequency and 
work of breathing post-MI [61].

The abundance of mitochondrial ETS complexes and respiration are influenced by 
Nox4 [22, 62, 63]. Nox4 knock-down or pharmacological inhibition increases ETS complex 
abundance and respiration in lung fibroblasts [62] and endothelial cells [63]. In contrast, 
Nox4 KO lowered the abundance of several ETS complexes but did not lower mitochondrial 
respiration in the diaphragm in our study. The MI-induced increase in ‘intrinsic mitochondria 
respiration’ (i.e., JO2/CS) was not evident in Nox4 KO, seemingly due to elevated values in 
Sham. The putative reason underlying this response is unclear and may reflect an impact 
of Nox4-derived ROS on diaphragm muscle mitochondrial protein function or effects on the 
mechanics and control of breathing. The apparent discrepancy between ETS complex subunit 
abundance and JO2 in our study might arise from measurements with submaximal [ADP], 
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within a range physiologically relevant for the diaphragm [33] and during a ‘steady-state’ 
condition. The decreased abundance of ETS complex subunits might compromise JO2 with 
maximal ADP or the kinetics with submaximal [ADP], resulting in abnormal bioenergetics 
that causes faster diaphragm fatigue, as seen in patients in the early-stage post-MI.

Mitochondrial ROS determines redox homeostasis in the diaphragm [64], and Nox4 has 
been considered a source of mitochondrial ROS [21, 22], presumably via the production of 
H2O2 [28, 58]. MI increased diaphragm ‘intrinsic mitochondria H2O2 emission’ (i.e., JH2O2/CS) 
in the absence and presence of physiological levels of ADP. Nox4KO did not exert protective 
effects on these responses. However, our data show that Nox4 contributes, indirectly, to 
diaphragm mitochondria electron leak during O2 consumption supported by ADP. The latter 
is a novel observation regarding the role of Nox4 in mitochondrial function.

Limitations
The main limitation of this study is our use of a whole-body Nox4 knockout model 

and the impossibility of distinguishing the involvement of Nox4 from other tissues or cell 
types on diaphragm effects post-MI. The advantage of our approach is the insight into 
potential diaphragm effects of systemic pharmacological inhibition of Nox4 in the early-
stage post-MI. Moreover, the quantification of Nox4 protein abundance in the diaphragm 
was not successful with commercially available antibodies, and we relied on Nox4 mRNA 
as an indicator of expression. The lack of a gold-standard measurement of mitochondrial 
content is also a limitation. The variability of normalized JO2 and JH2O2 data may reflect 
the discrepancy between the marker of mitochondrial content we used (citrate synthase 
abundance) and the actual mitochondrial content. No single protein appears to be a uniform 
marker of mitochondrial content for normalization and assessment of ‘intrinsic’ function 
[65]. However, citrate synthase is a reasonable estimate of content compared to the gold 
standard of volume density by electron microscopy in skeletal muscle [36].

Conclusion

Our study showed diaphragm contractile dysfunction and fiber atrophy within 72 
hrs post-MI. These findings suggest that atrophy is a crucial determinant of diaphragm 
weakness that contributes to diminished maximal inspiratory pressure documented in 
patients in the early-stage post-MI. Myocardial infarction also lowered the abundance of 
mitochondrial enzymes and increased intrinsic mitochondrial respiration and ROS, findings 
that suggest decreased mitochondrial content (or loss of specific mitochondrial proteins) and 
compensatory mitochondrial maladaptation that likely contribute to diminished inspiratory 
muscle endurance in the initial phase post-MI. Nox4 was required for normal diaphragm 
fiber size, mitochondrial protein abundance, and electron leak during respiration supported 
by ADP. However, Nox4 knockout did not prevent any of the diaphragm abnormalities we 
measured in the early phase post-MI.
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